分析 延长AB到F使BF=AD,如图,先判断△ADE为等边三角形得到AD=DE=AE,∠ADE=60°,再利用∠CDB=2∠CDE得到∠CDE=40°,∠CDB=80°,接着证明AF=AC,从而可判断△AFC为等边三角形,则有CF=AC,∠F=60°,然后证明△ACD≌△FCB 得到CB=CD,最后根据等腰三角形的性质和三角形内角和计算∠DCB的度数.
解答 解:延长AB到F使BF=AD,如图,
∵∠CAD=60°,∠AED=60°,
∴△ADE为等边三角形,
∴AD=DE=AE,∠ADE=60°,
∴∠BDE=180°-∠ADE=120°,
∵∠CDB=2∠CDE,
∴3∠CDE=120°,解得∠CDE=40°,
∴∠CDB=2∠CDE=80°,
∵BF=AD,
∴BF=DE,
∵DE+BD=CE,
∴BF+BD=CE,即DF=CE,
∵AF=AD+DF,AC=AE+CE,
∴AF=AC,
而∠BAC=60°,
∴△AFC为等边三角形,
∴CF=AC,∠F=60°,
在△ACD和△FCB 中
$\left\{\begin{array}{l}{AD=FB}\\{∠A=∠F}\\{AC=FC}\end{array}\right.$,
∴△ACD≌△FCB (SAS),
∴CB=CD,
∴∠CBD=∠CDB=80°,
∴∠DCB=180-(∠CBD+∠CDB)=20°.
点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.解决本题的关键是延长AB到F使BF=AD,构建△FCB与△ACD全等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{3}$ | B. | $\sqrt{13}$ | C. | 4 | D. | 2$\sqrt{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com