精英家教网 > 初中数学 > 题目详情
42、如图,AB⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.
(1)判断CD与AB的位置关系;
(2)BE与DF平行吗?为什么?
分析:(1)利用垂直于同一直线的两条直线平行来判断;
(2)利用同位角相等来判定两直线平行.
解答:解:(1)CD∥AB.
∵AB⊥BD,CD⊥MN,
∴∠CDM=∠ABD=90°,
∴CD∥AB;

(2)FD∥EB.
∵∠CDM=∠ABD,∠FDC=∠EBA,
∴∠CDM-∠FDC=∠ABD-∠EBA,
即∠FDM=∠EBM,
∴FD∥EB.
点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明
1
AB
+
1
CD
=
1
EF
成立(不要求考生证明).
若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD于点F,则:
(1)
1
AB
+
1
CD
=
1
EF
还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(2)请找出S△ABD,S△BED和S△BDC间的关系式,并给出证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点P在直线BD上,由B点到D点移动,
(1)当P点移动到离B点多远时,△ABP∽△PDC;
(2)当P点移动到离B多远时,∠APC=90°?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=BD,BC=BE,∠ABD=∠EBC,则有
△ABC
△ABC
△DBE
△DBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB⊥BD,CD⊥BD,AD=CB.求证:AD∥BC.

查看答案和解析>>

同步练习册答案