精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,∠BAC=120°,AB=AC,BC=4数学公式,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论.

解:作AD⊥BC垂足为D;
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°;
∵BC=4
∴BD=BC=2
可得AD=2;
又∵⊙A半径为2,
∴⊙A与BC相切.
分析:作AD⊥BC垂足为D,根据已知,利用勾股定理求得AD的长,将AD的长与半径2作比较;进而由(当AD>2时,相交;当AD=2时,相切;当AD<2时,相离),从而确定直线BC与⊙A的关系.
点评:此题主要考查了直线与圆的位置关系:若直线到圆心的距离为d,圆的半径为r,当d>r时,相离;当d=r时,相切;当d<r时,相交.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案