精英家教网 > 初中数学 > 题目详情

已知A=2x,B是多项式,计算B+A时,某同学把B+A误写成B÷A,结果得,试求B+A.

答案:略
解析:

解:由题意得

此题要先由求出B,然后再求BA


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读以下的材料:
如果两个正数a,b,即a>0,b>0,则有下面的不等式:
a+b
2
ab
当且仅当a=b时取到等号
我们把
a+b
2
叫做正数a,b的算术平均数,把
ab
叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:
例:已知x>0,求函数y=x+
4
x
的最小值.
解:另a=x,b=
4
x
,则有a+b≥2
ab
,得y=x+
4
x
≥2
x•
4
x
=4
,当且仅当x=
4
x
时,即x=2时,函数有最小值,最小值为2.
根据上面回答下列问题
①已知x>0,则当x=
 
时,函数y=2x+
3
x
取到最小值,最小值为
 

②用篱笆围一个面积为100m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?
③已知x>0,则自变量x取何值时,函数y=
x
x2-2x+9
取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍.
(1)若设乙店二、三月份销售额的月平均增长率为x,则甲店三月份的销售额为
10(1+2x)2
10(1+2x)2
万元,乙店三月份的销售额为
15(1+x)2
15(1+x)2
万元.(用含x的代数式表示)
(2)甲店、乙店这两个月销售额的月平均增长率各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表表示:
等级(x级) 一级 二级 三级
生产量(y台/天) 78 76 74
(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出y与x之间的函数关系式:
y=-2x+80
y=-2x+80

(2)每台护眼灯可获利z(元)关于等级x(级)的函数关系式:
z=20+x
z=20+x

(3)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•盐都区一模)某企业研发生产一种套装环保设备,计划每套成本不高于50万元,且每月的产量不超过40套.已知这种设备的月产量x( 套)与每套的售价y1(万元)之间满足关系式yl=170-2x,月产量x(套)与生产总成本y2万元)存在如图所示的一次函数关系,
(1)求y2与x之间的函数关系式;
(2)求月产量x的范围;
(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

国家推行“节能减排,低碳经济”政策后,某企业生产的一种环保设备供不应求.若该企业的这种环保设备每年的产量保持在一定的范围,每套设备的生产成本不高于50万元,每套设备的售价不低于90万元.已知这种设备的年产量x(套)与每套的售价y1(万元)之间满足关系式y1=170-2x,年产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.另外企业每年其它的总支出为700万元.
(1)直接写出y2与x之间的函数关系式;
(2)求年产量x的范围;
(3)当年产量x(套)为多少时,这种设备的年利润W(万元)最大?最大利润是多少?
(4)该企业希望这种设备的年利润不低于1218万元,请你利用(3)小题中的函数图象帮助该企业确定这种设备的销售单价的范围.在此条件下要使设备的生产成本最低,你认为销售单价应定为多少万元比较精英家教网合适?

查看答案和解析>>

同步练习册答案