精英家教网 > 初中数学 > 题目详情

设方程5(x-3)=3x-7的解为x1,方程=1+的解是x2,求代数式(x1+x2)(-x1x2)的值.

练习册系列答案
相关习题

科目:初中数学 来源:2011-2012年山东省无棣县九年级上学期期中考试数学卷 题型:解答题

(10分)阅读下面材料:解答问题
为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,
故原方程的解为  x1=,x2=-,x3=,x4=-.
上述解题方法叫做换元法;
请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

科目:初中数学 来源:2012届山东省无棣县十校九年级上学期期中联考数学卷 题型:解答题

阅读下面材料:解答问题
为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,
故原方程的解为  x1=,x2=-,x3=,x4=-.
上述解题方法叫做换元法;
请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

科目:初中数学 来源:2012-2013学年福建省长汀县城区五校九年级第一次月考联考数学试卷(解析版) 题型:解答题

阅读下面材料:解答问题

为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,

解得y1=1,y2=4.当y=1时,x2-1=1,

∴x2=2,

∴x=±;当y=4时,x2-1=4,

∴x2=5,

∴x=±

故原方程的解为  x1,x2=-,x3,x4=-

上述解题方法叫做换元法;

请利用换元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省无棣县十校九年级上学期期中联考数学卷 题型:解答题

阅读下面材料:解答问题

为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,解得y1=1,y2=4.

当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,

故原方程的解为  x1=,x2=-,x3=,x4=-.

上述解题方法叫做换元法;

请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

同步练习册答案