精英家教网 > 初中数学 > 题目详情
(2003•宜昌)已知:如图,CF=AE,AB∥CD,且AB=CD.
求证:△CDE≌△ABF.

【答案】分析:要证△CDE≌△ABF,就要找出满足两个三角形全等的条件:边角边对应相等.由平行可得两对应角相等,由CF=AE可得AF=CE,全等的条件就具备了.
解答:证明:∵AB∥CD,
∴∠DCE=∠FAB.
∵CF=AE,
∴AF=CE,
AB=CD,
∴△CDE≌△ABF.
点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2003•宜昌)已知⊙T与坐标轴有四个不同的交点M、P、N、Q,其中P是直线y=kx-1与y轴的交点,点Q与点P关于原点对称.抛物线y=ax2+bx+c经过点M、P、N,其顶点为H.
(1)求Q点的坐标;
(2)指出圆心T一定在哪一条直线上运动;
(3)当点H在直线y=kx-1上,且⊙T的半径等于圆心T到原点距离的倍时,你能确定k的值吗?若能,请求出k的值;若不能,请你说明理由.(图供分析参考用)

查看答案和解析>>

科目:初中数学 来源:2003年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

(2003•宜昌)已知⊙T与坐标轴有四个不同的交点M、P、N、Q,其中P是直线y=kx-1与y轴的交点,点Q与点P关于原点对称.抛物线y=ax2+bx+c经过点M、P、N,其顶点为H.
(1)求Q点的坐标;
(2)指出圆心T一定在哪一条直线上运动;
(3)当点H在直线y=kx-1上,且⊙T的半径等于圆心T到原点距离的倍时,你能确定k的值吗?若能,请求出k的值;若不能,请你说明理由.(图供分析参考用)

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《四边形》(05)(解析版) 题型:解答题

(2003•宜昌)已知菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源:2003年湖北省宜昌市中考数学试卷(解析版) 题型:解答题

(2003•宜昌)已知:如图,CF=AE,AB∥CD,且AB=CD.
求证:△CDE≌△ABF.

查看答案和解析>>

同步练习册答案