精英家教网 > 初中数学 > 题目详情
26、已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45度.
(1)求∠EBC的度数;
(2)求证:BD=CD.
分析:(1)∠EBC的度数等于∠ABC-∠ABE,因而求∠EBC的度数就可以转化为求∠ABC和∠ABE,根据等腰三角形的性质等边对等角,就可以求出.
(2)在等腰三角形ABC中,根据三线合一定理即可证得.
解答:解:(1)∵AB是⊙O的直径,
∴∠AEB=90°.
又∵∠BAC=45°,
∴∠ABE=45°.
又∵AB=AC,
∴∠ABC=∠C=67.5°.
∴∠EBC=22.5°.(4分)

(2)证明:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°.
∴AD⊥BC.
又∵AB=AC,
∴BD=CD.(8分)
点评:本题主要考查圆周角定理及等腰三角形的性质的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•东阳市模拟)已知:如图,AB为⊙O的直径,AC、BC为弦,点P为⊙O上一点,弧AC=弧AP,AB=10,tanA=
3

(1)求PC的长;
(2)过P作⊙O切线交BA延长线于E,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为⊙O直径,AC为弦,M为弧AC上一点,若∠CAB=40度,则∠AMC的度数为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为半圆O的直径,C、D是半圆上的两点,E是AB上除O外的一点,AC与DE交于点F.①
AD
=
DC
;②DE⊥AB;③AF=DF.请你写出以①、②、③中的任意两个条件,推出第三个(结论)的一个正确命题.并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB为⊙O的直径,AO为⊙O'的直径,⊙O的弦AC交⊙O'于D点,OC和BD相交于E点,AB=4,∠CAB=30°.求CE、DE的长.

查看答案和解析>>

同步练习册答案