精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,点EF分别在边ABCD上,下列条件不能判定四边形DEBF一定是平行四边形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

【答案】B

【解析】

根据平行四边形的判定方法一一判断即可;

解:A、由AECF,可以推出DFEB,结合DFEB,可得四边形DEBF是平行四边形;

B、由DEBF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;

C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DFEB,结合DFEB,可得四边形DEBF是平行四边形;

D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DFEB,结合DFEB,可得四边形DEBF是平行四边形;

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点B,C,D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2

(1)求证:AC是⊙O的切线;
(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,四边形中,于点.点边上一点,以为边作平行四边形,则最小值是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况.

(1)这一天的最高温度是多少?是在几时到达的?最低温度呢?

(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?

(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,△ABO的顶点坐标分别为O(0,0)、A(2a,0)、B(0,﹣a),线段EF两端点坐标为E(﹣m,a+1),F(﹣m,1)(2a>m>a);直线l∥y轴交x轴于P(a,0),且线段EFCD关于y轴对称,线段CDNM关于直线l对称.

(1)求点N、M的坐标(用含m、a的代数式表示);

(2)△ABO△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线 ACBD 相交成的锐角α=30°,若 AC=8BD=6,则ABCD的面积是( )

A.6B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,点 D 是边 BC 上的点(与 BC 两点不重合,过点 D DEACDFAB,分别交 ABAC EF 两点,下列说法正确的是(

A. AD 平分BAC,则四边形 AEDF 是菱形

B. BDCD,则四边形 AEDF 是菱形

C. AD 垂直平分 BC则四边形 AEDF 是矩形

D. ADBC则四边形 AEDF 是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平行四边形ABCD中,EF过对角线的交点O,如果AB=6cmAD=5cmOF=2cm,那么四边形 BCEF的周长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.
如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…
设游戏者从圈A起跳.

(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1
(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她与嘉嘉落回到圈A的可能性一样吗?

查看答案和解析>>

同步练习册答案