10£®Èçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬¾ØÐÎOABCµÄ±ßOA£¬OC·Ö±ðÔÚxÖᣬyÖáÉÏ£¬ÆäÖеãA£¬CµÄ×ø±ê·Ö±ðΪA£¨1£¬0£©£¬C£¨0£¬2£©£¬µãDÊÇÉäÏßCBÉÏ-¶¯µã£¬ÒÑÖª·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏó¾­¹ýµãDÇÒÓëÉäÏßAB½»ÓÚµãE£¬Á¬½ÓDE£®
£¨1£©µ±µãDΪBC±ßµÄÖеãʱ£¬ÇóµãEµÄ×ø±ê£»
£¨2£©µ±µãDÔÚCBµÄÑÓ³¤ÏßÉÏʱ£¬ÒÑÖª¡÷BDEµÄÃæ»ýΪ$\frac{1}{16}$£¬ÇókµÄÖµ£»
£¨3£©ÊÇ·ñ´æÔÚµãD¼°yÖáÉϵãF£¬Ê¹µÃÒÔµãD£¬E£¬FΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷BDEÈ«µÈ£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öDµãµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉA¡¢CµÄ×ø±ê¿ÉÇóµÃBµã×ø±ê£¬Ôò¿ÉÇóµÃDµã×ø±ê£¬´Ó¶ø¿ÉÇóµÃ·´±ÈÀýº¯Êý½âÎöʽ£¬Ôò¿ÉÇóµÃEµã×ø±ê£»
£¨2£©ÓÃk¿É·Ö±ð±íʾ³öD¡¢EµÄ×ø±ê£¬´Ó¶ø¿É±íʾ³öBDºÍBEµÄ³¤£¬ÀûÓá÷BDEµÄÃæ»ý¿ÉµÃµ½¹ØÓÚkµÄ·½³Ì£¬¿ÉÇóµÃkµÄÖµ£»
£¨3£©¿ÉÉèF£¨0£¬t£©£¬Ôò¿É±íʾ³öCF¡¢CD¡¢DFµÄ³¤£¬·ÖµãDÔÚÏ߶ÎBCÉϺÍÔÚÏ߶ÎCBµÄÑÓ³¤ÏßÉÏÁ½ÖÖÇé¿ö£¬ÓÉ¡÷CDF¡×¡÷MFE£¬¿ÉµÃ$\frac{DF}{EF}$=$\frac{CF}{EM}$£¬¼´$\frac{1-\frac{k}{2}}{2-k}$=$\frac{2-k-t+k}{1}$£¬½âµÃt=$\frac{3}{2}$£¬ÔÙÀûÓù´¹É¶¨ÀíÁз½³Ì£¬¿ÉÇóµÃkµÄÖµ£¬Ôò¿ÉÇóµÃDµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¡ßËıßÐÎOABCΪ¾ØÐΣ¬A£¨1£¬0£©£¬C£¨0£¬2£©£¬
¡àOA=1£¬OC=2£¬
¡àB£¨1£¬2£©£¬
¡ßDΪÏ߶ÎBCµÄÖе㣬
¡àD£¨$\frac{1}{2}$£¬2£©£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{1}{x}$£¬
µ±x=1ʱ£¬y=1£¬
¡àEµã×ø±êΪ£¨1£¬1£©£»

£¨2£©ÓÉ£¨1£©¿ÉÖªOA=1£¬OC=2£¬
¡àD£¨$\frac{k}{2}$£¬2£©£¬E£¨1£¬k£©£¬
¡àBE=k-2£¬BD=$\frac{k}{2}$-1£¬
¡àS¡÷BDE=$\frac{1}{2}$BD•BE=$\frac{1}{2}$£¨k-2£©£¨$\frac{k}{2}$-1£©=$\frac{1}{16}$£¬
½âµÃk=$\frac{3}{2}$»òk=$\frac{5}{2}$£»

£¨3£©´æÔÚ£®µ±µãDÔÚÏ߶ÎBCÉÏʱ£¬¹ýE×÷EM¡ÍyÖáÓÚµãM£¬Èçͼ1£¬

ÉèF£¨0£¬t£©£¬ÔòOF=t£¬CF=2-t£¬
ÓÉ£¨2£©¿ÉÉèD£¨$\frac{k}{2}$£¬2£©£¬E£¨1£¬k£©£¬
¡àAE=OM=k£¬BE=2-k£¬CD=$\frac{k}{2}$£¬BD=1-$\frac{k}{2}$£¬MF=t-k£¬
¡ß¡÷DEF¡Õ¡÷DEB£¬
¡àDF=BD=1-$\frac{k}{2}$£¬EF=BE=2-k£¬
ÔÚRt¡÷CDFÖУ¬Óɹ´¹É¶¨Àí¿ÉµÃCD2+CF2=DF2£¬¼´£¨$\frac{k}{2}$£©2+£¨2-t£©2=£¨1-$\frac{k}{2}$£©2£¬ÕûÀí¿ÉµÃk=-t2+4t-3£¬
ÓÉ¡÷CDF¡×¡÷MFE£¬¿ÉµÃ$\frac{DF}{EF}$=$\frac{CF}{EM}$£¬
¡à$\frac{1-\frac{k}{2}}{2-k}$=$\frac{2-k-t+k}{1}$£¬
½âµÃt=$\frac{3}{2}$£¬
¡àk=-$\frac{9}{4}$+6-3=$\frac{3}{4}$£¬
¡àDµãµÄ×ø±êΪ£¨$\frac{3}{8}$£¬2£©£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯Êý×ÛºÏÌâ¡¢¾ØÐεÄÐÔÖÊ¡¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ£¬Ñ§»áÓ÷½³ÌµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬Ò»´Îº¯Êýy=kx+b£¨k¡Ù0£©Óë·´±ÈÀýº¯Êýy=$\frac{m}{x}$£¨m¡Ù0£©µÄͼÏóÓй«¹²µãA£¨1£¬2£©£¬D£¨-2£¬-1£©£®Ö±Ïßl¡ÍxÖᣬÓëxÖá½»ÓÚµãN£¨3£¬0£©£¬ÓëÒ»´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄͼÏó·Ö±ð½»ÓÚµãB£¬C£®
£¨1£©ÇóÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çó¡÷ABCµÄÃæ»ý£»
£¨3£©¸ù¾ÝͼÏó»Ø´ð£¬ÔÚʲô·¶Î§Ê±£¬Ò»´Îº¯ÊýµÄÖµ´óÓÚ·´±ÈÀýº¯ÊýµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬OΪԭµã£¬Ã¿¸öС·½¸ñµÄ±ß³¤Îª1¸öµ¥Î»³¤¶È£®ÔÚµÚÒ»ÏóÏÞÄÚÓкᡢ×Ý×ø±ê¾ùΪÕûÊýµÄA¡¢BÁ½µã£®Á¬½ÓAB£¬²¢½«Ï߶ÎABÈƵãO°´Ë³Ê±ÕëÐýת90¡ãµ½µãA1¡¢B1£®
£¨1£©Ö±½Óд³öA1¡¢B1Á½µãµÄ×ø±ê£»
£¨2£©ÇóÏ߶ÎABµÄÖе㾭¹ýµÄ·¾¶³¤£»£¨½á¹û±£Áô¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚÒÑÖªÏ߶ÎABµÄͬ²à¹¹Ôì¡ÏFAB=¡ÏGBA£¬²¢ÇÒÔÚÉäÏßAF£¬BGÉÏ·Ö±ðÈ¡µãDºÍE£¬ÔÚÏ߶ÎABÉÏÈ¡µãC£¬Á¬½áDCºÍEC£®

£¨1£©Èçͼ£¬ÈôAD=3£¬BE=1£¬¡÷ADC¡Õ¡÷BCE£®ÔÚ¡ÏFAB=¡ÏGBA=60¡ã»ò¡ÏFAB=¡ÏGBA=90¡ãÁ½ÖÖÇé¿öÖÐÈÎÑ¡Ò»ÖÖ£¬½â¾öÒÔÏÂÎÊÌ⣺
¢ÙÏ߶ÎABµÄ³¤¶ÈÊÇ·ñ·¢Éú±ä»¯£¬Ö±½Óд³ö³¤¶È»ò±ä»¯·¶Î§£»
¢Ú¡ÏDCEµÄ¶ÈÊýÊÇ·ñ·¢Éú±ä»¯£¬Ö±½Óд³ö¶ÈÊý»ò±ä»¯·¶Î§£®
£¨2£©ÈôAD=a£¬BE=b£¬¡ÏFAB=¡ÏGBA=¦Á£¬ÇÒ¡÷ADCºÍ¡÷BCEÕâÁ½¸öÈý½ÇÐÎÈ«µÈ£¬ÇëÇó³ö£º
¢ÙÏ߶ÎABµÄ³¤¶È»òÈ¡Öµ·¶Î§£¬²¢ËµÃ÷ÀíÓÉ£»
¢Ú¡ÏDCEµÄ¶ÈÊý»òÈ¡Öµ·¶Î§£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÀûÓÃÃݵÄÔËËãÐÔÖʼÆË㣺$\sqrt{8}$¡Â$\root{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÏÈ»¯¼ò£¬ÔÙÇó´úÊýʽ$\frac{{x}^{2}-4}{{x}^{3}+4{x}^{2}+4x}$¡Â£¨1-$\frac{2}{x}$£©µÄÖµ£¬ÆäÖÐx=2£¨sin60¡ã-tan45¡ã£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬Ö±Ïßy=2x-6ÓëÅ×ÎïÏßy=2x2+bx+cÏཻÓÚA£¬BÁ½µã£¬µãAÔÚxÖáÉÏ£¬µãBÔÚyÖáÉÏ£¬µãPÔÚÖ±ÏßABÏ·½µÄÅ×ÎïÏßÉÏ£¬¹ýPµã·Ö±ð×÷PM¡ÎxÖá½»ABÓÚMµã£¬PN¡ÎyÖá½»ABÓÚNµã£¬ÒÔPM¡¢PNΪ±ß×÷¾ØÐÎPMQN£¬ÉèµãQµÄ×ø±êΪ£¨m£¬n£©£®
£¨1£©Çób£¬cµÄÖµ£»
£¨2£©ÇómÓënµÄº¯Êý¹Øϵʽ£»
£¨3£©È·¶¨µãPµÄλÖã¬Ê¹¾ØÐÎPMQNµÄÖܳ¤×î´ó£¬²¢Çó³öÕâ¸ö×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª£ºÈçͼ£¬AE=CF£¬AD¡ÎBC£¬AD=CB£®ÇóÖ¤£º¡ÏB=¡ÏD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÒÑÖªCDΪ¡ÑOµÄÖ±¾¶£¬CD¡ÍAB£¬´¹×ãΪµãF£¬¡ÏC=30¡ã£¬Á¬½áAO²¢ÑÓ³¤½»BCÓÚµãE£®
£¨1£©ÇóÖ¤£ºAE¡ÍBC£»
£¨2£©ÈôAO=1£¬ÇóÒõÓ°²¿·ÖµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸