精英家教网 > 初中数学 > 题目详情

面积为1的正方形的对角线长为________.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点.
(1)求FC的长;
(2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm2)最大?最大面积是多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.
精英家教网

查看答案和解析>>

科目:初中数学 来源:陕西省中考真题 题型:解答题

王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材,他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点。
(1)求FC的长;
(2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm2)最大?最大面积是多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(25):27.3 实践与探索(解析版) 题型:解答题

王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点.
(1)求FC的长;
(2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm2)最大?最大面积是多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.

查看答案和解析>>

科目:初中数学 来源:2006-2007学年山东省济宁市微山县九年级(上)期末数学试卷(解析版) 题型:解答题

王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点.
(1)求FC的长;
(2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm2)最大?最大面积是多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.

查看答案和解析>>

科目:初中数学 来源:2011年湖北省鄂州市石山中学中考数学模拟试卷(四)(解析版) 题型:解答题

王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①).王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点.
(1)求FC的长;
(2)利用图②求出矩形顶点B所对的顶点到BC边的距离x(cm)为多少时,矩形的面积y(cm2)最大?最大面积是多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.

查看答案和解析>>

同步练习册答案