精英家教网 > 初中数学 > 题目详情

【题目】先阅读,再回答问题:要比较代数式A、B的大小,可以作差A﹣B,比较差的取值,当A﹣B>0时,有A>B;当A﹣B=0时,有A=B;当A﹣B<0时,有A<B.”例如,当a<0时,比较a2和a(a+1)的大小.可以观察a2﹣a(a+1)=a2﹣a2﹣a=﹣a.因为当a<0时,﹣a>0,所以当a<0时,a2>a(a+1).
(1)已知M=(x﹣2)(x﹣16),N=(x﹣4)(x﹣8),比较M、N的大小关系.
(2)某种产品的原料提价,因而厂家决定对于产品进行提价,现有三种方案: 方案1:第一次提价p%,第二次提价q%;
方案2:第一次提价q%,第二次提价p%;
方案3:第一、二次提价均为 %.
如果设原价为a元,请用含a、p、q的式子表示提价后三种方案的价格.
方案1:;方案2:;方案3:
如果p,q是不相等的正数,三种方案哪种提价最多?

【答案】
(1)解:∵M=(x﹣2)(x﹣16)=x2﹣18x+32,N=(x﹣4)(x﹣8)=x2﹣12x+32,

∴M﹣N=(x2﹣18x+32)﹣(x2﹣12x+32)=﹣6x,

∴当x>0时,﹣6x<0,M<N;

当x=0时,﹣6x=0,M=N;

当x<0时,﹣6x>0,M>N.


(2)a(1+p%)(1+q%);a(1+p%)(1+q%);a(1+ %)2
【解析】解:方案1:a(1+p%)(1+q%); 方案2:a(1+p%)(1+q%);
方案3:a(1+ %)2
设p%=m,q%=n,则提价后三种方案的价格分别为:
方案1:a(1+m)(1+n)=a(1+m+n+mn);
方案2:a(1+m)(1+n)=a(1+m+n+mn);
方案3:a(1+ 2=a(1+m+n+ ).
a(1+m+n+ )﹣a(1+m+n+mn),
=a(1+m+n+ ﹣1﹣m﹣n﹣mn),
=a( ﹣mn),
= (m﹣n)2
∵p≠q,
∴m≠n,
(m﹣n)2>0,
∴方案3提价最多.
所以答案是:a(1+p%)(1+q%);a(1+p%)(1+q%);a(1+ %)2
【考点精析】解答此题的关键在于理解因式分解的应用的相关知识,掌握因式分解是整式乘法的逆向变形,可以应用与数字计算、求值、整除性问题、判断三角形的形状、解方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知x﹣2的平方根是±2, =3,求x2+y2的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣4x+a=0有两个相同的实数根,则a的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简求值:2(﹣3xy+2x2)﹣[x2﹣3(4xy﹣x2)],其中x,y满足|x+2|+(y﹣3)2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个角补角比它的余角的2倍多30°,求这个角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三角形的两边长分别为36,则这个三角形的第三边长可以是__________(写出一个即可),

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留三个有效数字,1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市出租车的收费标准为:起步价7.5元,超过3千米后每千米1.2元,则某人乘坐出租车行驶了x(x > 3)千米应付车费_____________

查看答案和解析>>

同步练习册答案