精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,
(1)求的长;
(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.

【答案】分析:(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;
(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.
解答:解:(1)连接OE、OF,
∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,
∴∠A=90°,∠OEA=∠OFA=90°
∴四边形AFOE是正方形
∴∠EOF=90°,OE=AE=
的长==π.

(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1
连接OM1、OR,
∵M1N1∥MN
∴∠DM1N1=∠DMN=60°
∴∠EM1N1=120°
∵MA、M1N1切⊙O于点E、R
∴∠EM1O=∠EM1N1=60°
在Rt△EM1O中,EM1===1
∴DM1=AD-AE-EM1=+5--1=4.
过点D作DK⊥M1N1于K
在Rt△DM1K中
DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2
∴当d=2时,直线MN与⊙O相切,
当1≤d<2时,直线MN与⊙O相离,
当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,
∴当2<d≤4时,MN直线与⊙O相交.
点评:本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=
kx
的图象上,若点A的坐标为(-2,-2),则k的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的一边AD在x轴上,对角线AC、BD交于点E,过B点的双曲线y=
kx
(x>0)
恰好经过点E,AB=4,AD=2,则K的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•葫芦岛)如图,矩形ABCD的对角线交于点O,∠BOC=60°,AD=3,动点P从点A出发,沿折线AD-DO以每秒1个单位长的速度运动到点O停止.设运动时间为x秒,y=S△POC,则y与x的函数关系大致为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD的对角线交于O点,∠AOB=120°,AD=5cm,则AC=
10
10
cm.

查看答案和解析>>

同步练习册答案