精英家教网 > 初中数学 > 题目详情
12.为了解九(3)班学生每天零花钱的使用情况,小明随机调查了20名同学,结果如表:关于这20名同学每天使用的零花钱,下列说法错误的是(  )
每天使用零花钱(单位:元)012345
人数256421
A.众数是2元B.中位数是2元C.极差是5元D.平均数是2.45元

分析 分别计算该组数据的众数、平均数、极差及中位数后找到正确答案即可.

解答 解:A、∵2出现了6次,出现的次数最多,∴众数是2元,故本选项正确;
B、把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是$\frac{2+2}{2}$=2元,故本选项正确;
C、极差是5-0=5元,故本选项正确;
D、平均数是$\frac{1×5+2×6+3×4+4×2+5}{20}$=2.1元,故本选项错误;
故选D.

点评 本题考查了极差、加权平均数、中位数及众数,在解决此类题目的时候一定要细心,特别是求中位数的时候,首先排序,然后确定数据总个数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.
(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点(  )
A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,已知AB=AC=6,BC=8,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于P点.
(1)求证:△ABE∽△ECP;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,使得AP=EP,若能,求出BE的长; 若不能,请说明理由;
(3)当BE为何值时,AP有最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列计算正确的是(  )
A.2(a-1)=2a-1B.(a+b)(b-a)=b2-a2C.(a+1)2=a2+1D.(-a-b)2=a2-2ab+b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.
(1)求B的坐标;
(2)当点P运动到点(t,0)时,试用含t的式子表示点D的坐标;
(3)是否存在点P,使△OPD的面积等于$\frac{\sqrt{3}}{4}$,若存在,请求出符合条件的点P的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2

(1)解决问题 如图1,当α=90°时,若BP=2AP=4,求P1、P2两点间的距离;
(2)变式训练 如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;
(3)深入探究 如图3,若点Q是△P2PB的外心,连接PQ,试探究P1P与PQ之间的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知下列函数:①y=-$\frac{2}{x}$(x>0),②y=-2x+1,③y=3x2+1(x<0),④y=x+3,其中y随x的增大而减小的函数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在?ABCD中,点E、F分别在AB、CD上,且AE=CF.求证:DE=BF.

查看答案和解析>>

同步练习册答案