分析 (1)根据AD、BD的长分别是方程x2-2$\sqrt{3}$x+$\frac{1}{4}$(m2-2m+13)=0的两个实数根,可以求得AD、BD的长,从而可以求得∠DBA和∠DAB的度数,由∠ADC=15°,可以求得∠ABC的度数,作辅助线DE⊥CD于点E,从而可以可以求得CD的长;
(2)作辅助线DE⊥BC于点E,DF⊥CA交CA的延长线于点F,画出相应的图形,然后进行灵活变化,即可证明所要证明的结论.
解答 解:(1)∵AD、BD的长分别是方程x2-2$\sqrt{3}$x+$\frac{1}{4}$(m2-2m+13)=0的两个实数根,
∴△=$(-2\sqrt{3})^{2}-4×1×\frac{1}{4}×({m}^{2}-2m+13)$=-(m-1)2≥0,
∴m-1=0,得m=1,
∴${x}^{2}-2\sqrt{3}x+3=0$,
解得,${x}_{1}={x}_{2}=\sqrt{3}$,
即AD=BD=$\sqrt{3}$,
∵AB是⊙O的直径,点C,D分别在两个半圆上(不与点A、B重合),
∴∠ADB=90°,
∴∠DAB=∠DBA=45°,
作DE⊥BC于点E,如下图一所示,
∵∠ADC=15°,∠ADB=90°,
∴∠ABC=∠ADC=15°,∠CDB=75°,
∴∠DBE=∠DBA+∠ABC=60°,
∴∠DCE=180°-∠CDB-∠DBE=45°,
∵BD=$\sqrt{3}$,
∴DE=BD•sin60°=$\sqrt{3}×\frac{\sqrt{3}}{2}=\frac{3}{2}$,
∵∠DEC=90°,DE=$\frac{3}{2}$,∠DCE=45°,
∴CD=$\frac{DE}{sin45°}=\frac{\frac{3}{2}}{\frac{\sqrt{2}}{2}}=\frac{3\sqrt{2}}{2}$;
(2)证明:作DE⊥BC于点E,DF⊥CA交CA的延长线于点F,如下图二所示,
由(1)可得,DE=EC,
∵∠DEC=∠ECA=∠CFD=90°,
∴四边形CFDE是正方形,
∴DF=CE,
∵∠AFD=∠BFD=90°,DA=DB,
∴在Rt△AFD和Rt△BED中
$\left\{\begin{array}{l}{DA=DB}\\{DF=DE}\end{array}\right.$
∴Rt△AFD≌Rt△BED(HL),
∴BE=AF,
∴BC+AC=BE+CE+AC=AF+AC+CE=CF+CE=2CE,
∵$CD=\sqrt{D{E}^{2}+C{E}^{2}}=\sqrt{2C{E}^{2}}=\sqrt{2}CE$,
∴BC+AC=2CE=$\sqrt{2}×(\sqrt{2}CE)$=$\sqrt{2}CD$,
即AC+BC=$\sqrt{2}$CD.
点评 本题考查圆的综合题、圆周角、一元二次方程中的△的值、特殊角的三角函数值,解题的关键是明确题意,画出相应的图形,利用数形结合的思想,找出所求结论需要的条件.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com