精英家教网 > 初中数学 > 题目详情
15.下列各式中,正确的是(  )
A.m2•m3=m6B.(2a+b)(a-b)=2a2+ab-b2
C.(5a+2b)(5a-3b)=25a2-6b2D.(x-y)(x2+xy+y2)=x3-y3

分析 各项计算得到结果,即可作出判断.

解答 解:A、原式=m5,不符合题意;
B、原式=2a2-2ab+ab-b2=2a2-ab-b2,不符合题意;
C、原式=25a2-15ab+10ab-6b2=25a2-5ab-6b2,不符合题意;
D、原式=x3-y3,符合题意,
故选D

点评 此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.某中学为了响应国家发展足球的战略方针,激发学生对足球的兴趣,特举办全员参与的“足球比赛”,赛后,全校随机抽查部分学生,其成绩(百分制)整理分成5组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:
成绩频数分布表
组别成绩(分)频数
A50≤x<606
B60≤x<70m
C70≤x<8020
D80≤x<9036
E90≤x<100n
(1)频数分布表中的m=4,n=18;
(2)样本中位数所在成绩的级别是D,扇形统计图中,E组所对应的扇形圆心角的度数是108;
(3)若该校共有2000名学生,请你估计体育综合测试成绩不少于80分的大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程:4x+1=2(3-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,△ABC在直角坐标系中,
(1)写出△ABC各点的坐标.A(-1,-1)B(4,2)C(1,3).
(2)若把△ABC向上平移1个单位,再向右平移3个单位得△A′B′C′,在图中画出△A′B′C′,并写出A′、B′、C′的坐标.A′(2,0)B′(7,3)C′(4,4).
(3)连结CA′,CB′,则△CA′B′的面积是5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知:在Rt△ABC中,斜边AB=10,sinA=$\frac{4}{5}$,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.
(1)当AP=CP时,求QP;
(2)若四边形PMQN为菱形,求CQ;
(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知等腰△ABC,建立适当的直角坐标系后,其三个顶点的坐标分别为A(m,0).B(m+4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是(  )
A.AC=BC≠ABB.AB=AC≠BCC.AB=BC≠ACD.AB=AC=BC

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,AB∥CD,∠D=∠E=35,则∠B的度数为(  )
A.60°B.65°C.70°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.定义:在平面直角坐标系中,点A、B为函数L图象上的任意两点,点A坐标为(x1,y1),点B坐标为(x2,y2),把式子$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$称为函数L从x1到x2的平均变化率;对于函数K:y=2x2-3x+1图象上有两点A(x1,y1)和B(x2,y2),当x1=1,x2-x1=$\frac{1}{3}$时,函数K从x1到x2的平均变化率是$\frac{5}{3}$;当x1=1,x2-x1=$\frac{1}{n}$(n为正整数)时,函数K从x1到x2的平均变化率是$\frac{n+2}{n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,已知四边形ABCD中,∠C=90°,点P是CD边上的动点,连接AP,E,F分别是AB,AP的中点,当点P在CD上从点D向点C移动过程中,下列结论成立的是(  )
A.线段EF的长先减小后增大B.线段EF的长不变
C.线段EF的长逐渐增大D.线段EF的长逐渐减小

查看答案和解析>>

同步练习册答案