精英家教网 > 初中数学 > 题目详情
(2006•丽水)如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.
(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.
①求证:△CQD∽△APD;
②连接PQ,设AP=x,求面积S△PCQ关于x的函数关系式;
(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.
①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;
②连接MN,求面积S△MCN关于t的函数关系式;
(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ等于平移所得S△MCN的最大值?说明你的理由.

【答案】分析:(1)①易得∠BCD=∠A=60°,∠ADP=∠CDE,那么可得△CQD∽△APD②利用相似可得CQ=x,那么PC=6-x.可表示出S△PCQ
(2)①由外角∠FEN=60°,∠B=30°,可得∠BNE=30°,∴NE=BN,那么△BEN是等腰三角形.易得AD=t,AB=12,那么BE=12-AD-DE=6-t.过E作EG⊥BN于点G.利用30°的三角函数可求得BG,进而求得BN
②容易利用t表示出MC、CN,即可表示出所求面积
(3)利用二次函数的最值表示出S△MCN的最大值,让前面所求的面积的代数式等于即可.
解答:解:(1)①证明:∵∠F=∠B=30°,∠ACB=∠BDF=90°∴∠BCD=∠A=60°,∵∠ADP+∠PDC=90°,∠CDE+∠PDC=90°∴△CQD∽△APD
②∵在Rt△ADC中,AD=3,DC=3
又∵△CQD∽△APD,CQ=x.
∴S△PCQ=-x2+3x

(2)①△BEN是等腰三角形.BE=6-t,BN=(6-t).
②S△MCN=(6-t)×t=-[(t-3)2-9]

(3)存在.
由题意建立方程-x2+3x=
解得X=
即当AP=或AP=时,S△PCQ等于S△MCN的最大值.
点评:用到的知识点为:两角对应相等,两三角形相似;相似三角形的对应边成比例.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2006•丽水)如图,建立羽毛球比赛场景的平面直角坐标系,图中球网高OD为1.55米,双方场地的长OA=OB=6.7(米).羽毛球运动员在离球网5米的点C处起跳直线扣杀,球从球网上端的点E直线飞过,且DE为0.05米,刚好落在对方场地点B处.

(1)求羽毛球飞行轨迹所在直线的解析式;
(2)在这次直线扣杀中,羽毛球拍击球点离地面的高度FC为多少米?(结果精确到O.1米)

查看答案和解析>>

科目:初中数学 来源:2006年浙江省丽水市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•丽水)如图,建立羽毛球比赛场景的平面直角坐标系,图中球网高OD为1.55米,双方场地的长OA=OB=6.7(米).羽毛球运动员在离球网5米的点C处起跳直线扣杀,球从球网上端的点E直线飞过,且DE为0.05米,刚好落在对方场地点B处.

(1)求羽毛球飞行轨迹所在直线的解析式;
(2)在这次直线扣杀中,羽毛球拍击球点离地面的高度FC为多少米?(结果精确到O.1米)

查看答案和解析>>

科目:初中数学 来源:2006年浙江省丽水市中考数学试卷(大纲卷)(解析版) 题型:填空题

(2006•丽水)如图,以△ABC的三边分别向外作正方形,它们的面积分别是S1,S2,S3,如果S1+S2=S3,那么△ABC的形状是    三角形.

查看答案和解析>>

科目:初中数学 来源:2006年浙江省丽水市中考数学试卷(大纲卷)(解析版) 题型:选择题

(2006•丽水)如图,四边形ABCD是由四个边长为l的正六边形所围住,则四边形ABCD的面积是( )

A.
B.
C.1
D.2

查看答案和解析>>

科目:初中数学 来源:2006年浙江省丽水市中考数学试卷(大纲卷)(解析版) 题型:选择题

(2006•丽水)如图,⊙O中弦AB,CD相交于点P,已知AP=3,BP=2,CP=1,则DP=( )

A.3
B.4
C.5
D.6

查看答案和解析>>

同步练习册答案