精英家教网 > 初中数学 > 题目详情
如图,一元二次方程x2+2x-3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为______,G点坐标为______;
(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.
(1)解方程x2+2x-3=0
得x1=-3,x2=1.
∴抛物线与x轴的两个交点坐标为:C(-3,0),B(1,0),
设抛物线的解析式为y=a(x+3)(x-1).
∵A(3,6)在抛物线上,
∴6=a(3+3)•(3-1),
∴a=
1
2

∴抛物线解析式为y=
1
2
x2+x-
3
2


(2)由y=
1
2
x2+x-
3
2
=
1
2
(x+1)2-2,
∴抛物线顶点P的坐标为(-1,-2),对称轴方程为x=-1.
设直线AC的解析式为y=kx+b,
∵A(3,6),C(-3,0)在该直线上,
3k+b=6
-3k+b=0
解得
b=3
k=1

∴直线AC的解析式为:y=x+3.
将x=-1代入y=x+3
得y=2,
∴G点坐标为(-1,2).

(3)作A关于x轴的对称点A′(3,-6),
连接A′G,A′G与x轴交于点M即为所求的点.
设直线A′G的解析式为y=kx+b.
3k+b=-6
-k+b=2
解得
b=0
k=-2

∴直线A′G的解析式为y=-2x,令x=0,则y=0.
∴M点坐标为(0,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知OB=2,点A和点B关于N(0,-2)成中心对称,抛物线y=ax2+bx+c经过点A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点P是x轴上的一动点,从点O出发沿射线OB方向运动,圆P半径为
3
2
4
,速度为每秒1个单位,试求几秒后圆P与直线AB相切;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
1
2
x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如果抛物线y=-x2+2(m-1)x+m+1与x轴都交于A,B两点,且A点在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b.
(1)求m的取值范围;
(2)若a:b=3:1,求m的值,并写出此时抛物线的解析式;
(3)设(2)中的抛物线与y轴交于点C,抛物线的顶点是M,问:抛物线上是否存在点P,使△PAB的面积等于△BCM面积的8倍?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.
(1)根据图象确定a、b、c的符号,并说明理由;
(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知A1,A2,A3,…,A2009是x轴上的点,且OA1=A1A2=A2A3=…=A2008A2009=1,分别过点A1,A2,A3,…,A2009作x轴的垂线交二次函数y=x2(x≥0)的图象于点P1,P2,P3,…,P2009,若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3,…,依次进行下去,最后记△P2008B2008P2009的面积为S2009,则S2009-S2008=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,长方形鸡场的一边靠墙(墙长18m),墙对面有一个2m宽的门,另三边用竹篱笆围成,篱笆总长33m,
(1)若鸡场面积为150m2,求鸡场的长和宽各为多少m?
(2)求围成的鸡场的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图平面直角坐标系中,函数图象的表达式应是(  )
A.y=
3
2
x2
B.y=
2
3
x2
C.y=
4
3
x2
D.y=
3
4
x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

涪陵榨菜是重庆市农村经济中产销规模最大、品牌知名度最高、辐射带动能力最强的特色支柱产业.某知名榨菜企业为顺应市场需求推出了“五味榨菜”礼盒,成本为20元/盒.年销售量y(万盒)与售价x(元/盒)之间满足一次函数关系,其图象如图所示.
(1)结合图象求y与x之间的函数关系;
(2)求“五味榨菜”礼盒的年获利w(万元)与x之间的函数关系,并求当售价为多少元时可以获得最大利润,最大利润是多少万元?
(3)去年,公司一直按照(2)中获得最大利润时的售价进行销售,今年在保持售价不变的基础上,公司发力品牌营销,决定拿出部分资金进行广告宣传.经调查发现:①每年有11万盒产品供给固定客户,其余产品全部被潜在客房购买;②若广告投入为a万元,则潜在客户的购买量将是去年购买量的m倍,则m=-
1
900
(a-30)2+2
;③受公司生产规模及资金限制,公司的年产量不超过28万盒,广告投入不超过32万元.问公司在广告上投入多少资金可以使公司获得最大利润,最大利润为多少万元?(利润=总销售额-总成本-广告费)

查看答案和解析>>

同步练习册答案