试题分析:(1)把点A代入解析式求出c和a,最后根据抛物线的对称轴求出b,即可求出最后结果.
(2)①本题需根据题意列出S与t的关系式,再整理即可求出结果.
②本题需分三种情况:当点R在BQ的左边,且在PB下方时;当点R在BQ的左边,且在PB上方时;当点R在BQ的右边,且在PB上方时,然后分别代入抛物线的解析式中,即可求出结果.
试题解析:(1)设抛物线的解析式为y=ax
2+bx+c,
由题意知点A(0,﹣12),
所以c=﹣12,
又18a+c=0,
,
∵AB∥OC,且AB=6,
∴抛物线的对称轴是x=
,
∴b=﹣4,
所以抛物线的解析式为y=
x
2﹣4x﹣12;
(2)①S=
·2t(6﹣t)=﹣t
2+6t=﹣(t﹣3)
2+9,(0<t<6),
②当t=3时,S取最大值为9.
这时点P的坐标(3,﹣12),
点Q坐标(6,﹣6),
若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:
(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),
(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
综上所述,点R坐标为(3,﹣18).