精英家教网 > 初中数学 > 题目详情
如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.

(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(1)抛物线的解析式为y=x2﹣4x﹣12;
(2)①S=﹣(t﹣3)2+9,(0<t<6),
②当t=3时,S取最大值为9,点R坐标为(3,﹣18),理由见解析.

试题分析:(1)把点A代入解析式求出c和a,最后根据抛物线的对称轴求出b,即可求出最后结果.
(2)①本题需根据题意列出S与t的关系式,再整理即可求出结果.
②本题需分三种情况:当点R在BQ的左边,且在PB下方时;当点R在BQ的左边,且在PB上方时;当点R在BQ的右边,且在PB上方时,然后分别代入抛物线的解析式中,即可求出结果.
试题解析:(1)设抛物线的解析式为y=ax2+bx+c,
由题意知点A(0,﹣12),
所以c=﹣12,
又18a+c=0,

∵AB∥OC,且AB=6,
∴抛物线的对称轴是x=
∴b=﹣4,
所以抛物线的解析式为y=x2﹣4x﹣12;
(2)①S=·2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,(0<t<6),
②当t=3时,S取最大值为9.
这时点P的坐标(3,﹣12),
点Q坐标(6,﹣6),
若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:
(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),
(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
综上所述,点R坐标为(3,﹣18).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

小明同学将直角三角板直角顶点置于平面直角坐标系的原点O,两直角边与抛物线分别相交于A、B两点.小明发现交点A、B两点的连线总经过一个固定点,则该点坐标为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标平面内,O为原点,抛物线经过点A(6,0),且顶点B(m,6)在直线上.
(1)求m的值和抛物线的解析式;
(2)如在线段OB上有一点C,满足,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请直接写出点N的坐标.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+2ax+b的图象与x轴交于点A、B,与y轴交于点C(0,),其顶点在直线y=-2x上.
(1)求a,b的值;
(2)写出当-2≤x≤2时,二次函数y的取值范围;
(3)以AC、CB为一组邻边作□ACBD,则点D关于x轴的对称点D’是否在该二次函数的图象上?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.

(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担,李明按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.
⑴李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
⑵设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?
⑶物价部门规定,这种节能灯的销售单价不得高于25元,如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=与x轴交于点A,与y轴交于点C,以AC为直径作⊙M,点是劣弧AO上一动点(点与不重合).抛物线y=-经过点A、C,与x轴交于另一点B,

(1)求抛物线的解析式及点B的坐标;
(2)在抛物线的对称轴上是否存在一点P,是︱PA—PC︱的值最大;若存在,求出点P的坐标;若不存在,请说明理由。
(3)连于点,延长,使,试探究当点运动到何处时,直线与⊙M相切,并请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a,b的大小关系为 (  )
A.a>bB.a<b
C.a=bD.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(1,2)和B(-2,5),试求出两个二次函数,使它们的图象都经过A、B两点.

查看答案和解析>>

同步练习册答案