【题目】“赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表
组别 | 成绩x(分) | 频数(人数) |
第1组 | 60≤x<68 | 4 |
第2组 | 68≤x<76 | 8 |
第3组 | 76≤x<84 | 12 |
第4组 | 84≤x<92 | a |
第5组 | 92≤x<100 | 10 |
第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:
(1)填空:a= 所抽取的40名学生比赛成绩的中位数是
(2)请将频数分布直方图补充完整
(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?
【答案】(1)6,78;(2)见解析;(3)240名
【解析】
(1)根据题意和频数分布表中的数据可以求得a的值和这组数据的中位数;
(2)根据(1)中a的值和分布表中成绩为76≤x<84的频数可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据可以计算出进入决赛的学生中有多少名学生的比赛成绩为优秀.
解:(1)a=40﹣4﹣8﹣12﹣10=6,
∵第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82,
∴中位数是78,
故答案为:6,78;
(2)由(1)知a=6,
补全的频数分布直方图如右图所示;
(3)600×=240(名),
答:进入决赛的学生中有240名学生的比赛成绩为优秀.
科目:初中数学 来源: 题型:
【题目】(2011山东济南,27,9分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】军运会前某项工程要求限期完成,甲队独做正好按期完成,乙队独做则要误期4天,现两队合作3天后,余下的工程再由乙队独做,比限期提前一天完成.
(1)请问该工程限期是多少天?
(2)已知甲队每天的施工费用为1000元,乙队每天的施工费用为800元,要使该项工程的总费用不超过7000元,乙队最多施工多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)证明:不论取何值,该函数图像与轴总有公共点;
(2)若该函数的图像与轴交于点(0,3),求出顶点坐标并画出该函数图像;
(3)在(2)的条件下,观察图像,解答下列问题:
①不等式的的解集是 ;
②若一元二次方程有两个不相等的实数根,则的取值范围是 ;
③若一元二次方程在的范围内有实数根,则的取
值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.
(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.
(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是( )
A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:
①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.
其中正确的是( )
A. ①②④ B. ①②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com