精英家教网 > 初中数学 > 题目详情
(2002•朝阳区)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,点E、F分别在AB、AC的延长线上,EF交⊙O于点M、N,交AD于点H,H是OD的中点,,EH-HF=2.设∠ACB=a,tana=,EH和HF是方程x2-(k+2)x+4k=0的两个实数根.
(1)求EF和HF的长;
(2)求BC的长.

【答案】分析:(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH;
(2)连接BD、CD,由于AD是直径,根据垂径定理可知,AD⊥EF,再利用同角的余角相等,可知∠E=∠1,再利用圆周角的性质,可知∠E=∠1=∠α,从而tan∠E=,结合EH=8,可求AH,再利用勾股定理可求AE,在Rt△AHF中,利用勾股定理可求AF,在Rt△ABD中,由于tan∠1=,可设AB=3m,BD=4m,利用勾股定理可知AD=5m,而H是OD中点,从而AD=AH,由于AH=6,可求AD、m的值,从而可求AB,利用∠α=∠E,再加上一个公共角,可证△ABC∽△AFE,可得比例线段,容易求出BC.
解答:解:(1)依题意,及一元二次方程根与系数关系,得
△=[-(k+2)]2-4×4k>0,①
EH+HF=k+2,②
EH•HF=4k>0,③
又EH-HF=2④
由②、③、④得k=12,
当k=12时,①成立.
把k=12代入原方程解得x1=8,x2=6,
∴EH=8,HF=6.

(2)解法一:
连接BD,
∵AD是⊙O的直径,
∴∠ABD=90°,
∵∠1=∠a,

∴AD⊥EF,即∠AHE=∠AHF=90°,
∴∠E=∠1=∠a,
在Rt△AEH中,tanE==tana=,又EH=8,
∴AH=6,
由勾股定理得AE=10,
在Rt△AHF中,AH=HF=6,
由勾股定理得AF=6
在Rt△ABD中,tan∠1==tana=
设AB=3m,则BD=4m,由勾股定理得AD=5m
∵H是OD的中点,
∴AH=AD
∴AD=AH=×6=8
∴5m=8,解得m=
∴AB=3m=
∵∠E=∠a,∠BAC=∠FAE,
∴△ABC∽△AFE

∴BC=
解法二:
同解法一求出AE=10,AD=8
连接CD,
∵AH=HF,且AH⊥HF,
∴∠HAF=∠F=45°
∵AD为⊙O直径,
∴∠ACD=90°,∠ADC=45°
∴AC=AD•sin∠ADC=AD•sin45°=4

以下同解法一求得BC=
点评:本题利用了根与系数的关系、三角函数值、圆周角的性质、勾股定理、相似三角形的判定和性质、垂径定理等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2002•朝阳区)已知:以直线x=1为对称轴的抛物线与x轴交于A、B两点(点A在点B的左边),且经过点(4,)和(0,-).点P(x,y)在抛物线的顶点M的右侧的半支上(包括顶点M),在x轴上有一点C使△OPC是等腰三角形,OP=PC.
(1)若∠OPC是直角,求点P的坐标;
(2)当点P移动时,过点C作x轴的垂线,交直线AM于点Q,设△AQC的面积为S,求S关于x的函数解析式和自变量x的取值范围,并画出它的图象.

查看答案和解析>>

科目:初中数学 来源:2002年北京市朝阳区中考数学试卷(解析版) 题型:解答题

(2002•朝阳区)已知:以直线x=1为对称轴的抛物线与x轴交于A、B两点(点A在点B的左边),且经过点(4,)和(0,-).点P(x,y)在抛物线的顶点M的右侧的半支上(包括顶点M),在x轴上有一点C使△OPC是等腰三角形,OP=PC.
(1)若∠OPC是直角,求点P的坐标;
(2)当点P移动时,过点C作x轴的垂线,交直线AM于点Q,设△AQC的面积为S,求S关于x的函数解析式和自变量x的取值范围,并画出它的图象.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(04)(解析版) 题型:解答题

(2002•朝阳区)已知:在内角不确定的△ABC中,AB=AC,点E、F分别在AB、AC上,EF∥BC,平行移动EF,如果梯形EBCF有内切圆.
时,sinB=
时,sinB=(提示:=);
时,sinB=
(1)请你根据以上所反映的规律,填空:当时,sinB的值等于______

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(02)(解析版) 题型:选择题

(2002•朝阳区)在△ABC中,∠C=90°,∠A=30°,sinA+cosB的值等于( )
A.
B.1
C.
D.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2002•朝阳区)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,点E、F分别在AB、AC的延长线上,EF交⊙O于点M、N,交AD于点H,H是OD的中点,,EH-HF=2.设∠ACB=a,tana=,EH和HF是方程x2-(k+2)x+4k=0的两个实数根.
(1)求EF和HF的长;
(2)求BC的长.

查看答案和解析>>

同步练习册答案