精英家教网 > 初中数学 > 题目详情
若a、b满足a2+2a-1=0,b2+2b-1=0,那么代数式(
1
a
-
1
b
)(ab2-a2b)
的值是
 
分析:根据根与系数的关系首先得出a,b是方程x2+2x-1=0的两根,再根据根与系数的关系得出a+b=-2,ab=-1,利用分式混合运算法则将分式整理再分别代入求出即可.
解答:解:∵a、b满足a2+2a-1=0,b2+2b-1=0,
∴a,b是方程x2+2x-1=0的两根,
∴a+b=-2,ab=-1,
当a≠b时,
(
1
a
-
1
b
)(ab2-a2b)

=
b-a
ab
×ab(b-a)
=a2+b2-2ab
=(a+b)2-4ab
=(-2)2-4×(-1)
=4+4
=8;
当a=b时,a-b=0,
(
1
a
-
1
b
)(ab2-a2b)

=
b-a
ab
×ab(b-a)
=0.
故答案为:0或8.
点评:此题主要考查了根与系数的关系以及一元二次方程的解的应用,根据已知得出a,b是方程x2+2x-1=0的两根,从而利用根与系数的关系得出是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、若实数abc满足a2+b2+c2=9,代数式(a-b)2+(b-c)2+(c-a)2的最大值是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若实数abc满足a2+b2+c2=9,代数式(a-b)2+(b-c)2+(c-a)2的最大值是(  )
A.27B.18C.15D.12

查看答案和解析>>

科目:初中数学 来源:2010年河南省新乡市封丘县五科竞赛初三数学试卷(解析版) 题型:选择题

若实数abc满足a2+b2+c2=9,代数式(a-b)2+(b-c)2+(c-a)2的最大值是( )
A.27
B.18
C.15
D.12

查看答案和解析>>

科目:初中数学 来源:2009年四川省成都市七中外地生招生考试数学模拟试卷(解析版) 题型:选择题

若实数abc满足a2+b2+c2=9,代数式(a-b)2+(b-c)2+(c-a)2的最大值是( )
A.27
B.18
C.15
D.12

查看答案和解析>>

同步练习册答案