精英家教网 > 初中数学 > 题目详情
13.计算:sin30°+2-1+$\sqrt{4}$=3.

分析 首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.

解答 解:sin30°+2-1+$\sqrt{4}$
=0.5+0.5+2
=3
故答案为:3.

点评 此题主要考查了实数的运算,负整数指数幂和特殊角的三角函数值,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.将面积为4的正方形ABCD与面积为8的正方形AEFG按图①的位置放置,AD、AE在同一条直线上,AB、AG在同一条直线上.
(1)试判断DG、BE的数量和位置关系,并说明理由;
(2)如图2,将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,求此时BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在Rt△ABC中,∠C=90°,若AC=2,tanB=$\frac{1}{3}$,则BC=6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,点A,B的坐标分别为A(1,0),B(3,0).探究:抛物线y=x2-2mx+m2-4(m为常数)交x轴于点M,N两点;
(1)当m=2时,求出抛物线的顶点坐标及线段MN的长;
(2)对于抛物线y=x2-2mx+m2-4(m为常数).
①线段MN的长度是否发生改变,请说明理由;
②若该抛物线与线段AB有公共点,请直接写出m的取值范围;
拓展:对于抛物线y=a2(x-b)2-4(a,b为常数,且满足a=$\frac{1}{b}$).
(1)请直接写出该抛物线与y轴的交点坐标;
(2)若该抛物线与线段AB有公共点,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图(1),抛物线y=-$\frac{1}{2}$x2+x+4与x轴交于点A,B(点A在点B左侧)、直线l经过点B、C两点
(1)求A、B、C三点坐标及直线BC的函数表达式;
(2)若点F是线段OC上一动点,则在第一象限的抛物线上是否存在点E,使得△BCE≌△BCF,若存在,请直接写出点E的坐标;若不存在,请说明理由.
(3)如图(2),在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以点P、Q、A、M为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点Q.
(1)求证:CQ=QP
(2)设点Q的坐标为(x,y),求y关于x的函数关系式及自变量x的取值范围;
(3)如图2,连结OQ,OB,当点P在线段OA上运动时,设三角形OBQ的面积为S,当x取何值时,S取得最小值,并求出最小值;

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,线段BC的两端点的坐标分别为B(3,7),C(6,3),以点A(1,0)为位似中心,将线段BC缩小为原来的$\frac{1}{2}$后得到线段DE,则端点D的坐标为(  )
A.(1,$\frac{7}{2}$)B.(2,$\frac{7}{2}$)C.(1,2)D.(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,?ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C,将?ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,则点E的坐标为($\frac{12}{5}$,5).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.计算$\frac{1}{2}$-$\frac{1}{2}$×3的结果是(  )
A.0B.1C.-2D.-1

查看答案和解析>>

同步练习册答案