如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.
1.求点A的坐标:
2.如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;
3.如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值 2 (直接写结果).
1.如图,连接AC、BC,设直线AB交y轴于点E,
∵AB∥x轴,CD∥x轴,C、B为抛物线C1、C2的顶点,
∴AC=BC,BC=BD,
∵AB=BD,
∴AC=BC=AB,
∴△ABC是等边三角形,
∴∠ACE=30°,
设AE=m,
则CE=AE=m,
∵y1=x2+1,
∴点C的坐标为(0,1),
∴点A的坐标为(﹣m,1+m),
∵点A在抛物线C1上,
∴(﹣m)2+1=1+m,
整理得m2﹣m=0,
解得m1=,m2=0(舍去),
∴点A的坐标为(﹣,4);(3分)
2.如图2,连接AC、BC,过点C作CE⊥AB于点E,
设抛物线y1=2x2+b1x+c1=2(x﹣h1)2+k1,
∴点C的坐标为(h1,k1),
设AE=m,
∴CE=m,
∴点A的坐标为(h1﹣m,k1+m),
∵点A在抛物线y1=2(x﹣h1)2+k1上,
∴2(h1﹣m﹣h1)2+k1=k1+m,
整理得,2m2=m,
解得m1=,m2=0(舍去),
由(1)同理可得,CD=BD=BC=AB,
∵AB=2AE=,
∴CD=,
即CD的长为,
根据题意得,CE=BC=×=,
∴点B的坐标为(h1+,k1+),
又∵点B是抛物线C2的顶点,
∴y2=a2(x﹣h1﹣)2+k1+,
∵抛物线C2过点C(h1,k1),
∴a2(h1﹣h1﹣)2+k1+=k1,
整理得a2=﹣,
解得a2=﹣2,
即a2的值为﹣2;(3分)
3.根据(2)的结论,a2=﹣a1,
CD=﹣﹣(﹣)=+=,
根据(1)(2)的求解,CD=2×,
∴b1+b2=2.(4分)
【解析】(1)连接AC、BC,根据二次函数图象的对称性可得AC=BC,BC=BD,再根据已知条件AB=BD,可以证明得到△ABC是等边三角形,所以∠ACE=30°,然后设AE=m,根据等边三角形的性质求出CE的长,再根据抛物线C1:y1=x2+1求出点C的坐标,从而表示出点A的坐标,然后把点A的坐标代入抛物线C1的解析式,然后解关于m的一元二次方程求出m的值,代入即可得到点A的坐标;
(2)过点C作CE⊥AB于点E,设抛物线y1=2x2+b1x+c1=2(x﹣h1)2+k1,然后表示出C的坐标,再设AE=m,根据等边三角形的性质求出CE的长度,从而得到点A的坐标,把点A的坐标代入抛物线C1,整理后解关于m的一元二次方程,再根据(1)的结论即可求出CD的长;根据CD的长求出CE的长度,然后表示出点B的坐标,根据点B在是抛物线C2的顶点,从而得到抛物线C2的顶点式解析式,然后根据点C在抛物线C2上,把点C的坐标代入抛物线C2的解析式,整理求解即可得到a2的值;
(3)根据(1)(2)的结论可知,a2=﹣a1,然后利用两抛物线的对称轴表示出CD的长度,再根据(1)(2)的求解过程可得CD=2×,然后代入进行计算即可得解.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com