精英家教网 > 初中数学 > 题目详情

(本题12分) 在正方形网格中以点为圆心,为半径作圆交网格于点(如图(1)),过点作圆的切线交网格于点,以点为圆心,为半径作圆交网格于点

(如图(2)).

 

 

问题:

(1)求的度数;

(2)求证:

(3)可以看作是由经过怎样的变换得到的?并判断的形状(不用说明理由).

(4)如图(3),已知直线,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形,使三个顶点,分别在直线上.要求写出简要的画图过程,不需要说明理由.

 

 

 

【答案】

(1)连接BC,由网格可知点C在AB的中垂线上,

∴AC=BC,…………………………………………………………………………………1分

∵AB=AC,

∴AB=BC=AC,即是等边三角形.……………………………………………2分

=60°;…………………………………………………………………………3分

(2)∵CD切⊙A于点C,

.…………………………………………………………………4分

在Rt与Rt中,

∵AB=AC,AE=AD.……………………………………………………………………5分

(HL).……………………………………………………6分

(3)可以看作是由绕点A顺时针旋转60°得到的. …………7分是等边三角形.………………………………………………………………8分

(4)在直线a上任取一点,记为点A′,作A′M′⊥b,垂足为点M′;作线段

A′M′的垂直平分线,此直线记为直线d;以点A′为圆心,A′M′长为半径画圆,与直线d交于点N′;………………………9分

过点N′作N′C′⊥A′N′交直线c于点C′;……………………………………10分

以点A′为圆心,A ′C′ 长为半径画圆,此圆交直线b于点B′; ……………11分

连接A′B′、B′C′,则△A′B′C′为所求等边三角形.………………………12分

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题12分)如图,在平面直角坐标系中,等腰梯形OABC,CB//OA,且点A在x轴正半轴上.已知C(2,4),BC=4.

(1)求过O、C、B三点的抛物线解析式,并写出顶点坐标和对称轴;

(2)经过O、C、B三点的抛物线上是否存在P点(与原点O不重合),使得P点到两坐标轴的

距离相等.如果存在,求出P点坐标;如果不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题12分)
如图,面积为8的矩形ABOC的边OB、OC分别在轴、轴的正半轴上,点A在双曲线
图象上,且AC=2.

【小题1】(1)求值;
【小题2】(2)将矩形ABOC以B旋转中心,顺时针旋转90°后得到矩形FBDE,双曲线交DE于M点,交EF于N点,求△MEN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题12分)如图,在平面直角坐标系中,等腰梯形OABC,CB//OA,且点A在x轴正半轴上.已知C(2,4),BC= 4.
(1)求过O、C、B三点的抛物线解析式,并写出顶点坐标和对称轴;
(2)经过O、C、B三点的抛物线上是否存在P点(与原点O不重合),使得P点到两坐标轴的
距离相等.如果存在,求出P点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013届浙江临安於潜第一初级中学九年级上期末综合考试数学试卷(一)(带解析) 题型:解答题

(本题12分)
某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):

销售单价(元)
50
53
56
59
62
65
月销售量(千克)
420
360
300
240
180
120
 
该商品以每千克50元为售价,在此基础上设每千克的售价上涨元(为正整数),每个月的销售利润为元.
(1)求的函数关系式,并直接写出自变量的取值范围;
(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:初中数学 来源:2012届九年级第三次模拟考试数学卷 题型:解答题

(本题满分12分)在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF. 连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.

【小题1】⑴ 求tan∠FOB的值;
【小题2】⑵用含t的代数式表示△OAB的面积S;
【小题3】⑶是否存在点C,使以BEF为顶点的三角形与△OFE相似,若存在,请求出所有满足要求的B点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案