精英家教网 > 初中数学 > 题目详情
已知:抛物线y=x2+(b-1)x-5.
(1)写出抛物线的开口方向和它与y轴交点的坐标;
(2)若抛物线的对称轴为直线x=1,求b的值,并画出抛物线的草图(不必列表);
(3)如图,若b>3,过抛物线上一点P(-1,c)作直线PA⊥y轴,垂足为A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数解析式.
分析:(1)根据a值大于0,判断抛物线的开口向上,令x=0求出函数值y,就是抛物线与y轴的交点坐标;
(2)根据对称轴解析式列式求出b的值,从而得到抛物线解析式,再根据抛物线与坐标轴的交点与顶点坐标作出草图即可;
(3)先根据b>3判断出点P在对称轴的左侧,然后根据BP=2PA求出点B的坐标,然后把点P、B的坐标代入抛物线解析式,利用待定系数法求出b、c的值,即可写出该抛物线对应的二次函数解析式.[或者根据点BP的中点在抛物线的对称轴上,利用对称轴解析式列式进行计算求解b的值.]
解答:解:(1)∵a=1>0,
∴抛物线开口向上,
当x=0时,y=02+(b-1)×0-5=-5,
∴它与y轴的交点坐标为(0,-5);

(2)抛物线的对称轴为x=1,
∴-
b
2a
=-
b-1
2×1
=1,
解得b=-1,
故抛物线的解析式为y=x2-2x-5;
图象如右;

(3)∵b>3,
∴抛物线的对称轴x=-
b
2a
=-
b-1
2
<-1,
∴对称轴在点P的左侧,
∵直线PA⊥y轴,且P(-1,c),BP=2PA,
∴点B的坐标为(-3,c),
把点B(-3,c)、P(-1,c)代入抛物线解析式y=x2+(b-1)x-5得,
9+(b-1)×(-3)-5=c
1+(b-1)×(-1)-5=c

解得
b=5
c=-8

∴抛物线所对应的二次函数解析式为y=x2+4x-5;
[或:∵点B(-3,c)、P(-1,c),
∴BP的中点(-2,c)在抛物线的对称轴上,
∴-
b
2a
=-
b-1
2
=-2,解得b=5.]
点评:本题是对二次函数的综合考查,抛物线的开口方向,与坐标轴的交点的求解,以及待定系数法求二次函数解析式,综合性题目但难度不大,只要仔细分析,认真计算便不难求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知:抛物线y=x2+px+q向左平移2个单位,再向下平移3个单位,得到抛物线y=x2-2x-1,则原抛物线的顶点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含m的代数式表示);
(2)“若AB的长为2
2
,求抛物线的解析式.”解法的部分步骤如下,补全解题过程,并简述步骤①的解题依据,步骤②的解题方法;
解:由(1)知,对称轴与x轴交于点D(
 
,0)
∵抛物线的对称性及AB=2
2

∴AD=DB=|xA-xD|=2
2

∵点A(xA,0)在抛物线y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h=xC=xD,将|xA-xD|=
2
代入上式,得到关于m的方程0=(
2
)2+(      )

(3)将(2)中的条件“AB的长为2
2
”改为“△ABC为等边三角形”,用类似的方法求出此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=x2+bx+c的图象经过(1,6)、(-1,2)两点.
求:这个抛物线的解析式、对称轴及顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=-x2-2(m-1)x+m+1与x轴交于a(-1,0),b(3,0),则m为
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•集美区模拟)已知:抛物线y=x2+(m-1)x+m-2与x轴相交于A(x1,0),B(x2,0)两点,且x1<1<x2
(1)求m的取值范围;
(2)记抛物线与y轴的交点为C,P(x3,m)是线段BC上的点,过点P的直线与抛物线交于点Q(x4,y4),若四边形POCQ是平行四边形,求抛物线所对应的函数关系式.

查看答案和解析>>

同步练习册答案