精英家教网 > 初中数学 > 题目详情
如图,已知AB为⊙O的直径,直线l与⊙O相切于点D,AC⊥l于C,AC交⊙O于点E,DF⊥AB于F.
(1)图中哪条线段与BF相等?试证明你的结论;
(2)若AE=3,CD=2,求⊙O的直径.
分析:(1)利用弦切角定理以及平行线的性质可以证明AD是∠BAC的角平分线,根据角平分线的性质定理可证得:CD=DF,进而证得△BDF≌△EDC,则BF=CE;
(2)根据AC=AF,BF=CE即可求解.
解答:解:(1)FB=CE.
证明:连接DE,BD.
∵DC是圆的切线.
∴∠EDC=∠DAC  OD⊥直线l
∵AC⊥直线l.
∴OD∥AC
∴∠ADO=∠DAC
∵OA=OD
∴∠OAD=∠ADO
∴∠OAD=∠DAC
∴DF=DC
∵AB是圆O的直径.且DF⊥AB
∴∠ABD=∠BAD
∴∠ABD=∠EDC
∴△BDF≌△EDC
∴FB=CE;
(2)∵CD是圆O的切线.
∴CD2=CE•CA,即4=CE(CE+3)
解得:CE=1
则BF=CE=1
∴AB=BF+AF=BF+AC=1+AE+CE=1+3+1=5.
点评:本题是弦切角定理,根据弦切角定理以及平行线的性质定理证明△BDF≌△EDC是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB为半⊙O的直径,直线MN与⊙O相切于C点,AE⊥MN于E,BF⊥MN于F.
求证:(1)AE+BF=AB;(2)EF2=4AE•BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼和浩特)如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.
(1)求证:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
35
,求PE的长.

查看答案和解析>>

同步练习册答案