精英家教网 > 初中数学 > 题目详情
8.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处
(Ⅰ)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.
(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.

分析 (1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;
根据△OCP与△PDA的面积比为1:4,得出CP=$\frac{1}{2}$AD=4,设OP=x,则CO=8-x,由勾股定理得 x2=(8-x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;
(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=$\frac{1}{2}$PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=$\frac{1}{2}$QB,
再求出EF=$\frac{1}{2}$PB,由(1)中的结论求出PB=$\sqrt{{8}^{2}+{4}^{2}}=4\sqrt{5}$,最后代入EF=$\frac{1}{2}$PB即可得出线段EF的长度不变

解答 解:(1)如图1,∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴∠1+∠3=90°,
∵由折叠可得∠APO=∠B=90°,
∴∠1+∠2=90°,
∴∠2=∠3,
又∵∠D=∠C,
∴△OCP∽△PDA;
∵△OCP与△PDA的面积比为1:4,
∴$\frac{OP}{PA}=\frac{CP}{DA}=\sqrt{\frac{1}{4}}=\frac{1}{2}$,
∴CP=$\frac{1}{2}$AD=4,
设OP=x,则CO=8-x,
在Rt△PCO中,∠C=90°,
由勾股定理得 x2=(8-x)2+42
解得:x=5,
∴AB=AP=2OP=10,
∴边CD的长为10;
(2)作MQ∥AN,交PB于点Q,如图2,
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.
∴MP=MQ,
∵BN=PM,
∴BN=QM.
∵MP=MQ,ME⊥PQ,
∴EQ=$\frac{1}{2}$PQ.
∵MQ∥AN,
∴∠QMF=∠BNF,
在△MFQ和△NFB中,
$\left\{\begin{array}{l}{∠QFM=∠NFB}\\{∠QMF=∠BNF}\\{MQ=BN}\end{array}\right.$,
∴△MFQ≌△NFB(AAS).
∴QF=$\frac{1}{2}$QB,
∴EF=EQ+QF=$\frac{1}{2}$PQ+$\frac{1}{2}$QB=$\frac{1}{2}$PB,
由(1)中的结论可得:PC=4,BC=8,∠C=90°,
∴PB=$\sqrt{{8}^{2}+{4}^{2}}=4\sqrt{5}$,
∴EF=$\frac{1}{2}$PB=2$\sqrt{5}$,
∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2$\sqrt{5}$.

点评 此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,经过点A(-1,0),C(0,-2)的抛物线$y=\frac{1}{2}{x^2}+bx+c$与x轴交于A、B两点,与y轴交于点C
(1)求此抛物线的函数解析式和顶点D的坐标;
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;
(3)在(1)的结论下,在x轴下方的抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:
         运往地
车 型
甲 地(元/辆)乙 地(元/辆)
大货车720800
小货车500650
(1)求这两种货车各用多少辆?
(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的
总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);
(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y与摄氏度数x之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:
摄氏度数x(℃)035100
华氏度数y(℉)3295212
(1)选用表格中给出的数据,求y关于x的函数解析式(不需要写出该函数的定义域);
(2)已知某天的最低气温是-5℃,求与之对应的华氏度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,高AD交边BC于点D,AD=12cm,BD=16cm,CD=8cm.动点P从点D出发,沿折线D-A-B向终点B运动,点P在AD上的速度4cm/s,在AB上的速度5cm/s.同时点Q从点B出发,以6cm/s的速度,沿BC向终点C运动,当点Q停止运动时,点P也随之停止.设点P的运动时间为t(s).
(1)当点P在AB上时,用含t的代数式表示AP的长.
(2)设△CPQ的面积为S(cm2),求S与t之间的函数关系式.
(3)写出PQ平行于△ABC一边时的t值.
(4)若点M是线段AD上一点,且AM=$\frac{9}{2}$,直接写出点M在△CPQ的内部时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知,在Rt△ABC中,∠ACB=90°,P是AC的中点.
实践与操作:利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法):①以线段BC为直径作⊙O,交AB于点D;②连接PD.
推理与运用:求证:PD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在△ABC中,∠C=90°,AB=10,$\frac{BC}{AC}$=$\frac{3}{4}$,过AB边上一点P作PE⊥AC于点E,PF⊥BC于点F,则EF的最小值是$\frac{24}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:在△ABC中,AB=AC,AD⊥BC,垂足为D,BE⊥AC,垂足为E,M为AC的中点,联结DE、DM,设∠C=α.
(1)当△ABC是锐角三角形时,试用α表示∠EDM;
(2)当△ABC是钝角三角形时,请画出相应的图形,并用α表示∠EDM(可直接写出).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如果a是(-8)2的平方根,那么$\root{3}{a}$等于(  )
A.-8B.-2C.±8D.±2

查看答案和解析>>

同步练习册答案