【题目】已知:如图,⊙O的直径AB与弦CD相交于点E,且E为CD中点,过点B作CD的平行线交弦AD的延长线于点F .
(1)求证:BF是⊙O的切线;
(2)连结BC,若⊙O的半径为2,tan∠BCD=,求线段AD的长.
【答案】(1)见解析;(2)
【解析】
(1)由垂径定理可证AB⊥CD,由CD∥BF,得AB⊥BF,则BF是⊙O的切线;
(2)连接BD,根据同弧所对圆周角相等得到∠BCD =∠BAD,再利用圆的性质得到∠ADB=90°, tan∠BCD= tan∠BAD= ,得到BD与AD的关系,再利用解直角三角形可以得到BD、AD与半径的关系,进一步求解即可得到答案.
(1)证明:∵ ⊙O的直径AB与弦CD相交于点E,且E为CD中点
∴ AB ⊥CD, ∠AED =90°
∵ CD // BF
∴ ∠ABF =∠AED =90°
∴ AB⊥BF
∵ AB是⊙O的直径
∴ BF是⊙O的切线
(2)解:连接BD
∵∠BCD、∠BAD是同弧所对圆周角
∴∠BCD =∠BAD
∵ AB是⊙O的直径
∴∠ADB=90°
∵ tan∠BCD= tan∠BAD=
∴
∴设BD=3x,AD=4x
∴AB=5x
∵ ⊙O的半径为2,AB=4
∴5x=4,x=
∴AD=4x=
科目:初中数学 来源: 题型:
【题目】如图,在一张矩形纸片中,对角线,点分别是和的中点,现将这张纸片折叠,使点落在上的点处,折痕为,若的延长线恰好经过点,则点到对角线的距离为( ).
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:矩形中,,,点,分别在边,上,直线交矩形对角线于点,将沿直线翻折,点落在点处,且点在射线上.
(1)如图1所示,当时,求的长;
(2)如图2所示,当时,求的长;
(3)请写出线段的长的取值范围,及当的长最大时的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长;
(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD是由三个全等矩形拼成的,AC与DE、EF、FG、HG、HB分别交于点P、Q、K、M、N,设△EPQ、△GKM、△BNC的面积依次为S1、S2、S3.若S1+S3=30,则S2的值为( ).
A.6B.8
C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为( )
A. B. C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某配餐公司有A,B两种营养快餐。一天,公司售出两种快餐共640份,获利2160元。两种快餐的成本价、销售价如下表。
A种快餐 | B种快餐 | |
成本价 | 5元/份 | 6元/份 |
销售价 | 8元/份 | 10元/份 |
(1)求该公司这一天销售A、B两种快餐各多少份?
(2)为扩大销售,公司决定第二天对一定数量的A、B两种快餐同时举行降价促销活动。降价的A、B两种快餐的数量均为第一天销售A、B两种快餐数量的2倍,且A种快餐按原销售价的九五折出售,若公司要求这些快餐当天全部售出后,所获的利润不少于3280元,那么B种快餐最低可以按原销售价打几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com