精英家教网 > 初中数学 > 题目详情
如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,连接DE、DF.有下面三个结论:
(1)△BEF∽△CEG;
(2)当点E在线段BC上运动时,△BEF和△CEG的周长之和为24;
(3)当BE=
55
6
时,△DEF的面积为
121
6

其中正确结论的序号是
(1)(2)(3)
(1)(2)(3)
分析:(1)由AB∥DG,即可直接得到两个三角形相似.
(2)利用勾股定理可求出BM=3,又因为Rt△BEF∽Rt△BAM,令BE=x,那么根据相似比,可用含x的代数式分别表示EF,BF,同样在△CEG中,令CE=y,可用含y的代数式表示CG,EG,又x+y=10,那么能求出两三角形的周长和是
12
5
(x+y)=24.
(3)利用相似比、勾股定理可得EF=
4
5
x,CG=
3
5
(10-x),那么利用三角形的面积公式,可得到y与x的关系式,再根据二次函数求最大值来求即可.
解答:解:(1)∵四边形ABCD是平行四边形,∴AB∥DG,
∴∠B=∠GCE,∠G=∠BFE,
∴△BEF∽△CEG,故此选项正确;
(2)过点C作FG的平行线交直线AB于H,
因为GF⊥AB,所以四边形FHCG为矩形.
所以FH=CG,FG=CH,
因此,△BEF与△CEG的周长之和等于BC+CH+BH,
∵∠B=∠B,∠AMB=∠BHC=90°
∴△ABM∽△CBH,
AB
BC
=
AM
CH

由BC=10,AB=5,AM=4,
可得CH=8,
∴BH=6,
所以BC+CH+BH=24,故此选项正确;
(3)设BE=x,则EF=
4
5
x,GC=
3
5
(10-x),
所以y=
1
2
EF•DG=
1
2
4
5
x[
3
5
(10-x)+5]=-
6
25
x2+
22
5
x,
配方得:y=-
6
25
(x-
55
6
2+
121
6

所以,当x=
55
6
时,y有最大值.
最大值为
121
6
,故此选项正确.
故答案为:(1)(2)(3).
点评:此题主要考查了相似三角形的判定和性质,勾股定理,三角形的面积公式,二次函数求最大值的问题,熟练掌握相似三角形的判定与性质是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二精英家教网次方程x2-7x+12=0的两个根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E为x轴上的点,且S△AOE=
16
3
,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,平行四边形ABCD中,∠ABC的角平分线BE交AD于E点,AB=3,ED=1,则平行四边形ABCD的周长是
14

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=
5
,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转一定角度后,分别交BC、AD于点E、F.
精英家教网
(1)试说明在旋转过程中,线段AF与EC总保持相等;
(2)当旋转角为90°时,在图2中画出直线AC旋转后的位置并证明此时四边形ABEF是平行四边形;
(3)在直线AC旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.(图供画图或解释时使用)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=6,DB=8,则四边形ABCD是的周长为
20
20

查看答案和解析>>

同步练习册答案