精英家教网 > 初中数学 > 题目详情
25、如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB于点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F,连接OC、FC.
(1)求证:CE是⊙O的切线.
(2)若FC∥AB,求证:四边形AOCF是菱形.
分析:(1)由翻折的性质可知∠FAC=∠OAC,∠E=∠ADC=90°,然后根据OA=OC得到∠OAC=∠OCA,从而得到OC∥AE,得到∠OCE=90°,从而判定切线.
(2)利用FC∥AB,OC∥AF判定四边形AOCF是平行四边形,根据OA=OC,利用邻边相等的平行四边形是菱形判定□AOCF是菱形.
解答:解:(1)由翻折可知∠FAC=∠OAC,∠E=∠ADC=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠FAC=∠OCA,
∴OC∥AE
∴∠OCE=90°,
即OC⊥OE,
∴CE是⊙O的切线;

(2)∵FC∥AB,OC∥AF,
∴四边形AOCF是平行四边形,
∵OA=OC,
∴□AOCF是菱形.
点评:本题考查了切线的判定、菱形的判定及翻折变换的性质,利用翻折变换的性质得到∠FAC=∠OAC,∠E=∠ADC=90°是解决此类问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.
求证:BF=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠EDC=33°,则∠DAE的度数为
72
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D是△ABC内一点,且BD=DC.求证:∠ABD=∠ACD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=BC,∠ABC=90°,D是BC的中点,且它关于AC的对称点是D′,BD′=
5
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D点是BC的中点,DE⊥AB于E点,DF⊥AC于F点,则图中全等三角形共有
3
3
对.

查看答案和解析>>

同步练习册答案