精英家教网 > 初中数学 > 题目详情

在△ABC中,DE是中位线,∠B的平分线交DE于F,则△ABF一定是


  1. A.
    锐角三角形
  2. B.
    直角三角形
  3. C.
    钝角三角形
  4. D.
    直角三角形或钝角三角形
B
分析:根据角平分线的性质及中位线定理可得BD=BF,再根据如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形即可得到答案.
解答:∵∠B的平分线交DE于F.
∴∠DBF=∠FBC.
∵DE是中位线.
∴DE∥BC.
∴∠DFB=∠FBC.
∴∠DBF=∠DFB.
∴BD=BF.
∵DE是中位线.
∴AD=DB.
∴DF=AB.
∴△ABF一定是直角三角形.
故选B.
点评:此题主要考查:
(1)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
(2)直角三角形斜边上的中线的定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD得周长为13cm,则△ABC的周长是
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,DE是AC的垂直平分线,△ABC和△ABD的周长分别为18cm和12cm.则线段AE为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,DE是边AB的垂直平分线,其中∠B=40°,∠EAC=35°,则∠C=
65°
65°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,DE是边AB的垂直平分线,交AB于E,交AC于D,连接BD.
(1)若∠ABC=∠C,∠A=50°,求∠DBC的度数;
(2)若AB=12,且△BCD的周长为18,求△ABC的周长.

查看答案和解析>>

同步练习册答案