精英家教网 > 初中数学 > 题目详情

如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2作业宝别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

解:(1)连接圆心O和T1的6个顶点可得6个全等的正三角形.
所以r:a=1:1;
连接圆心O和T2相邻的两个顶点,得以圆O半径为高的正三角形,
所以r:b=AO:BO=sin60°=:2;

(2)T1:T2的边长比是:2,所以S1:S2=(a:b)2=3:4.
分析:(1)根据圆内接正六边形的半径等于它的边长,则r:a=1:1;在由圆的半径和正六边形的半边以及正六边形的半径组成的直角三角形中,根据锐角三角函数即可求得其比值;
(2)根据相似多边形的面积比是相似比的平方.由(1)可以求得其相似比,再进一步求得其面积比.
点评:计算正多边形中的有关量的时候,可以构造到由正多边形的半径、边心距、半边组成的直角三角形中,根据锐角三角函数进行计算.注意:相似多边形的面积比即是其相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=
 
;r:b=
 
精英家教网正六边形T1,T2的面积比S1:S2的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2精英家教网别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

查看答案和解析>>

科目:初中数学 来源:第3章《直线与圆、圆与圆的位置关系》中考题集(39):3.3 圆与圆的位置关系(解析版) 题型:解答题

如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(72):3.7 弧长及扇形的面积(解析版) 题型:解答题

如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

查看答案和解析>>

同步练习册答案