精英家教网 > 初中数学 > 题目详情
如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON.

(1)求该二次函数的关系式;
(2)若点A的坐标是(6,-3),求△ANO的面积;
(3)当点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:
①证明:∠ANM=∠ONM;
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.
(1)
(2)12
(3)相似三角形的基本知识推出该角度的相等,不能

试题分析:(1)∵二次函数图象的顶点为P(4,-4),∴设二次函数的关系式为
又∵二次函数图象经过原点(0,0),∴,解得
∴二次函数的关系式为,即。(2分)
(2)设直线OA的解析式为,将A(6,-3)代入得,解得
∴直线OA的解析式为
把x=4代入得y=-2。∴M(4,-2)。
又∵点M、N关于点P对称,∴N(4,-6),MN=4。
。(3分)
(3)①证明:过点A作AH⊥于点H,,与x轴交于点D。则
设A(),
则直线OA的解析式为
则M(),N(),H()。
∴OD=4,ND=,HA=,NH=

。∴∠ANM=∠ONM。(2分)
②不能。理由如下:分三种情况讨论:
情况1,若∠ONA是直角,由①,得∠ANM=∠ONM=450
∴△AHN是等腰直角三角形。∴HA=NH,即
整理,得,解得
∴此时,点A与点P重合。故此时不存在点A,使∠ONA是直角。
情况2,若∠AON是直角,则
 ,

整理,得,解得
∴此时,故点A与原点或与点P重合。故此时不存在点A,使∠AON是直角。
情况3,若∠NAO是直角,则△AMN∽△DMO∽△DON,∴
∵OD=4,MD=,ND=,∴
整理,得,解得
∴此时,点A与点P重合。故此时不存在点A,使∠ONA是直角。
综上所述,当点A在对称轴右侧的二次函数图象上运动时,△ANO不能成为直角三角形。(3分)
点评:在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

二次函数的对称轴为 (    )
A.-2B.2 C.1D.-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象如图所示,有下列5个结论:

;②;③
;⑤  (
其中正确的结论有
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠A=90º,AB=6cm,AC=8cm,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向以1cm/s的速度运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R、交DE于G,当点Q与点C重合时,点P停止运动.设点P运动时间为ts.

(1)点D到BC的距离DH的长是     
(2)当四边形BQGD是菱形时,t=     ,S△EGR=     
(3)令QR=y,求y关于t的函数关系式(不要求写出自变量的取值范围);
(4)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把二次函数y=x2的图象向右平移2个单位后,再向上平移3个单位所得图象的函数表达式是(   )
A.y=(x-2)2+3B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若抛物线y=ax2+bx+c经过点(0,―3),(2,―3)且与x轴的一个交点坐标是(―2,0),则与x轴的另一个交点坐标是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知四边形ABCD中,AB∥CD,∠A=∠D=90°,AD=CD=4,AB=7.
现有M、N两点同时以相同的速度从A点出发,点M沿A—B—C-D方向前进,点N沿A—D—C-B方向前进,直到两点相遇时停止.设点M前进的路程为,△AMN的面积为
(1)试确定△AMN存在时,路程的取值范围.
(2)请你求出面积S关于路程的函数.
(3)当点M前进的路程为多少时,△AMN的面积最大?最大是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,如图,将若干个边长为的正方形并排组成矩形OABC,相邻两边OA、OC分别落在y轴的正半轴和x轴的负半轴上,将这些正方形顺时针绕点O旋转135°得到相应矩形OA′B′C′,二次函数y=ax2+bx(a≠0)过点O、B′、C′.

(1)如图,当正方形个数为1时,填空:点B′坐标为        ,点C′坐标为            ,二次函数的关系式为                         ,此时抛物线的对称轴方程为                      

(2)如图,当正方形个数为2时,求y=ax2+bx+c(a≠0)图像的对称轴;

(3)当正方形个数为2013时,求y=ax2+bx+c(a≠0)图像的对称轴;
(4)当正方形个数为n个时,请直接写出:用含n的代数式来表示y=ax2+bx+c(a≠0)图像的对称轴。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数与一次函数的图像相交于点A(-2,4),B(8,2)。如图所示,则能使成立的x的取值范围是         

查看答案和解析>>

同步练习册答案