精英家教网 > 初中数学 > 题目详情
16.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,将∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于E,F.

(1)当∠EDF绕点D旋转到DE⊥AC于E时,如图①所示,试证明S△DEF+S△CEF=$\frac{1}{2}$S△ABC
(2)当∠EDF绕点D旋转到DE和AC不垂直时,如图②图③所示,上述结论是否成立?若成立,请说明理由;若不成立,试说明S△DEF,S△CEF与S△ABC之间的数量关系,并证明.

分析 (1)当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形,边长是AC的一半,即可得出结论;
(2)成立;先证明△CDE≌△BDF,即可得出结论;
(3)不成立;同(2)得:△DEC≌△DBF,得出S△DEF=S五边形DBFEC=S△CFE+S△DBC=S△CFE+$\frac{1}{2}$S△ABC

解答 解:(1)如图①中,

当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形;设△ABC的边长AC=BC=a,则正方形CEDF的边长为 $\frac{1}{2}$a
∴S△ABC=$\frac{1}{2}$a2,正方形CEDF的面积=( $\frac{1}{2}$a)2=$\frac{1}{4}$a2
即S△DEF+S△CEF=$\frac{1}{2}$S△ABC

(2)上述结论成立;理由如下:连接CD;如图②所示:

∵AC=BC,∠ACB=90°,D为AB中点,
∴∠B=45°,∠DCE=$\frac{1}{2}$∠ACB=45°,CD⊥AB,CD=$\frac{1}{2}$AB=BD,
∴∠DCE=∠B,∠CDB=90°,
∵∠EDF=90°,
∴∠1=∠2,
在△CDE和△BDF中,
$\left\{\begin{array}{l}{∠1=∠2}\\{CD=BD}\\{∠DCE=∠B}\end{array}\right.$,
∴△CDE≌△BDF(ASA),
∴S△DEF+S△CEF=S△ADE+S△BDF=$\frac{1}{2}$S△ABC

(3)不成立;S△DEF-S△CEF=$\frac{1}{2}$S△ABC;理由如下:连接CD,如图③所示:

同(2)得:△DEC≌△DBF,∠DCE=∠DBF=135°
∴S△DEF=S五边形DBFEC
=S△CFE+S△DBC
=S△CFE+$\frac{1}{2}$S△ABC
∴S△DEF-S△CFE=$\frac{1}{2}$S△ABC
∴S△DEF、S△CEF、S△ABC的关系是:S△DEF-S△CEF=$\frac{1}{2}$S△ABC

点评 本题考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法,证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,在直角坐标系中,已知点A(8,0)、B(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<$\frac{10}{3}$)秒.解答如下问题:
(1)当t为何值时,△APQ与△ABO相似?
(2)设△AQP的面积为S,求S与t之间的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.化简:(-2a2b33+3a4b3×(-ab32

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,
连结BF,CE.下列说法:①△ABD和△ACD面积相等; ②∠BAD=∠CAD;
③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有①③④.(把你认为正确的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)75$\frac{7}{19}$+|(-81$\frac{5}{21}$)+67$\frac{7}{19}$|-73$\frac{5}{21}$
(2)-14-$\frac{1}{6}$×[2-(-3)2]
(3)(-3)2-($\frac{3}{2}$)2×$\frac{2}{9}$+6÷|-$\frac{2}{3}$|3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.当a=3,b=-1时,
(1)求代数式a2-b2和(a+b)(a-b)的值;
(2)猜想这两个代数式的值有何关系?
(3)根据(1)(2),你能用简便方法算出a=2016,b=2015时,a2-b2的值吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)a$\sqrt{8a}$-2a2$\sqrt{\frac{1}{8a}}$+3$\sqrt{2{a}^{3}}$              
(2)2cos245°-sin30°•tan245°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)解方程(y2-2y+1)(y2+2y-1)=y2(y+2)(y-2);
(2)已知x+y=7,xy=12,求x2+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,四边形ABCD是圆O的内接四边形,AB的延长线与DC的延长线交于点E,且∠D=∠E.
(1)求证:∠ADC=∠CBE;
(2)求证:CB=CE;
(3)设AD不是圆O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.

查看答案和解析>>

同步练习册答案