精英家教网 > 初中数学 > 题目详情
精英家教网如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.
(1)求△ABC中AB边上的高h;
(2)设DG=x,当x取何值时,水池DEFG的面积最大?
(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树.
分析:(1)由三角形ABC的面积可求出AB边上的高;
(2)由相似三角形对应高的比等于相似比,可用含x的代数式表示GF,得到水池的面积y关于x的二次函数,由二次函数的性质,可求面积最大时x的值;
(3)根据相似形可算出BE小于1.85,大树在最大水池的边上,为了避开,以C为点在三边上各去一点. 矩形二边与三角形二直角边重合.
解答:精英家教网解:如图,(1)过点C作CI⊥AB,交GF于H,在△ABC中用勾股定理得:AB=10,
∵S△ABC=
1
2
AC•
BC=
1
2
AB•CI,
1
2
×6×8=
1
2
×10×CI,
∴CI=4.8;
∴△ABC中AB边上的高h=4.8.

(2)∵水池是矩形,
∴GF∥AB,
∴△CGF∽△CAB,
∵CH,CI分别是△CGF和△CAB对应边上的高,
CH
CI
=
GF
AB

4.8-x
4.8
=
GF
10

∴GF=10-
25x
12

∵10-
25x
12
>0,
∴0<x<
24
5

设水池的面积为y,则
y=x(10-
25x
12
)=-
25
12
x2+10x,
当x=-
10
2×(
-25
12
)
=2.4时,水池的面积最大;

(3)∵FE⊥AB,CI⊥AB,
∴FE∥CI,
∴△BFE∽△BCI,
∴FE:CI=BE:BI,
又∵FE=2.4,CI=4.8,
在Rt△BCI中用勾股定理可得BI=3.6,
∴BE=
FE•BI
CI
=
2.4×3.6
4.8
=1.8,
∵BE=1.8<1.85,
∴这棵大树在最大水池的边上.
为了保护这棵大树,设计方案如图:
精英家教网
点评:根据题意寻找关系式,准确列出二次函数,由函数的性质,计算出面积最大时GD的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2009•裕华区二模)已知,如图△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让△ABC在BC所在的直线l上向左平移.当点B与点E重合时,点A恰好落在三角板的斜边DF上的M点,点C在N点位置上(假定AB、AC与三角板斜边的交点为G、H)
问:(1)在△ABC平移过程中,通过测量CH、CF的长度,猜想CH、CF满足的数量关系;
(2)在△ABC平移过程中,通过测量BE、AH的长度,猜想BE.AH满足的数量关系;
(3)证明(2)中你的猜想.(证明不得含有图中未标示的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•金平区模拟)如图,一块直角三角形纸片,将三角形ABC沿直线AD折叠,使AC落在斜边AB上,点C与点E重
合,用直尺圆规作出点E和直线AD.(要求:尺规作图,保留作图痕迹,不必写作法和证明)

查看答案和解析>>

科目:初中数学 来源:2009年浙江省丽水市莲都区中考数学适应性考试试卷(解析版) 题型:解答题

(2009•莲都区模拟)如图,在梯形ABCD中,AD∥BC,∠BCD=Rt∠,∠B=45°小宇用一块三角板EGF,使直角边EG与CD重合,点G与点C重合,直角边EG沿着CB从点C往点B平移,当点G运动到点B时,平移就结束.设CG的长度为xcm,梯形ABCD被直角边EG扫过的面积为ycm2,y与x的图象如图2所示,其中OP是线段,曲线PQ是抛物线的一部分,抛物线的顶点是Q(7,).
(1)直接写出BC、AD、CD的长度;
(2)求出y与x之间的函数关系式,并写出自变量的范围;
(3)探究:三角板直角边EG在运动过程中,是否存在这样的点G,使得以A、D、G为顶点的三角形为等腰三角形?如果存在,求出x的值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市花都区中考数学二模试卷(解析版) 题型:填空题

(2009•花都区二模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为    cm.

查看答案和解析>>

科目:初中数学 来源:2009年北京市平谷区中考数学一模试卷(解析版) 题型:填空题

(2009•平谷区一模)如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池AEDF,已知剩余的两直角三角形(阴影部分)的斜边长分别为20cm和30cm,则剩余的两个直角三角形(阴影部分)的面积和为    cm2

查看答案和解析>>

同步练习册答案