【题目】如图,射线AN上有一点B,AB=5,tan∠MAN=,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).
(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)
(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.
(3)当△AFD是轴对称图形时,直接写出t的值.
【答案】(1)AD=5t,DF=t+5.(2)当0<t<时,S=﹣6t2+10t.当t>时,S=6t2﹣10t.(3)t的值为或或.
【解析】
(1)利用勾股定理算出AD,表示出CB,即可表示出DF.
(2)分别讨论0<t<时和t>时,利用面积公式计算即可.
(3)分别讨论当DF=AD时的一种情况、当AF=DF时的两种情况.
解:(1)在Rt△ACD中,AC=3t,tan∠MAN=,
∴CD=4t.
∴AD=,
当点C在点B右侧时,CB=3t﹣5,
∴CF=CB.
∴DF=4t﹣(3t﹣5)=t+5.
(2)当0<t<时,S=(5﹣3t)4t=﹣6t2+10t.
当t>时,S=(3t﹣5)4t=6t2﹣10t.
(3)①如图1中,当DF=AD时,△ADF是轴对称图形.
则有5﹣3t﹣4t=5t,解得t=,
②如图2中,当AF=DF时,△ADF是轴对称图形.
作FH⊥AD.
∵FA=DF,
∴AH=DH=t,
由cos
③如图3中,当AF=DF时,△ADF是轴对称图形.
作FH⊥AD.
∵FA=DF,
∴AH=DH=t,
由cos∠FDH=,可得,解得t=.
综上所述,满足条件的t的值为或或.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.
解答下列问题:
(1)①填空:△ACE∽_________∽___________;
②求证:△CDE∽△CBA;
(2)求的值;
(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是 (3,4),反比例函数y=(k≠0)经过点C,则k的值为( )
A.12B.15C.20D.32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+2x+m+1交x轴于点(a,0)和点(b,0),交y轴于点C,抛物线顶点为D,下列四个结论中:①当x>0时,y>0;②若a=﹣1,则b=3;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G、F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中正确的有( )个
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E点.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=60°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=(x>0)的图象经过菱形OACD的顶点D和边AC上的一点E,且CE=2AE,菱形的边长为8,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从共享单车、共享汽车等共享出行到共享充电宝、共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者,小宇上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),将这四张卡片背面朝上,洗匀放好.
(1)从中随机抽取一张,求刚好抽到“共享服务”的概率.
(2)从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在超市购物的时间为 分钟,小聪返回学校的速度为 千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com