精英家教网 > 初中数学 > 题目详情
17.解不等式组$\left\{\begin{array}{l}{5x-3<4x}\\{4(x+1)+2≥x}\end{array}\right.$.

分析 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.

解答 解:解不等式5x-3<4x,得:x<3,
解不等式4(x+1)+2≥x,得:x≥-2,
则不等式组的解集为-2≤x<3.

点评 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,在网格图中,每格是边长为1的正方形,四边形ABCD的顶点均为格点.
(1)以O为位似中心,在网格图中作四边形A′B′C′D′,使四边形A′B′C′D′于四边形ABCD位似,且$\frac{OC′}{OC}$=2.
(2)求$\frac{{S}_{△A′B′O}}{{S}_{△A′C′O}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A'B'OC'.
(1)若抛物线过点C,A,A',求此抛物线的解析式;
(2)求平行四边形ABOC和平行四边形A'B'OC'重叠部分△OC'D的周长;
(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.一元二次方程x2-x-1=0和2x2-6x+5=0,这两个方程的所有实数根之和为(  )
A.4B.-4C.-6D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AH是⊙O的直径,矩形ABCD交⊙O于点E,连接AE,将矩形ABCD沿AE折叠,点B落在CD边上的点F处,画直线EF.
(1)求证:直线EF是⊙O的切线.
(2)若CD=10,EB=5,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2. 如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字1,2,3,4,5,6,如图2,正方形ABCD的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落在圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落得圈B;…设游戏者从圈A起跳.
(1)小贤随机掷一次骰子,求落回到圈A的概率P1
(2)小南随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出他与小贤落回到圈A的可能性一样吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.G为BC上的一点,将△ADE沿AE对折至△AFE,同时将△ABG沿AG对折至△AFG,连接CF.
(1)求∠AEC+∠AGC的度数;
(2)求证:BG=GC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.当x≠6且x≠2时,分式$\frac{x+1}{1-\frac{4}{x-2}}$有意义;当x≠2且x≠1时,分式$\frac{1}{1-\frac{1}{x-1}}$意义.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=8,DE=2,AB=5,则AC长是(  )
A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案