【题目】在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;
(3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系
【答案】(1)C(0,2),D(4,2),S四边形ABDC=8;(2)存在,P(0,4)或(0,﹣4);(3)点p在线段BD上,∠OPC=∠PCD+∠POB;点P在BD延长线上,∠OPC=∠POB-∠PCD;点P在DB延长线上运动时,∠OPC=∠PCD-∠POB.
【解析】
(1)根据点平移的规律易得点C的坐标为(0,2),点D的坐标为(4,2);四边形ABDC的面积=2×(3+1)=8;
(2)存在.设点P到AB的距离为h,则S△PAB= ×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标.
(3)分类讨论:当点P在线段BD上,作PM∥AB,根据平行线的性质由MP∥AB得∠2=∠POB,由CD∥AB得到CD∥MF,则∠1=∠PCD,所以∠OPC=∠POB+∠PCD;同样得到当点P在线段DB的延长线上,∠OPC=∠PCD-∠POB;当点P在线段BD的延长线上,得到∠OPC=∠POB-∠PCD.
(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)在y轴上是存在一点P,使S△PAB=S四边形ABDC.理由如下:
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,
解得h=4,
∴P(0,4)或(0,-4).
(3)当点P在线段BD上,作PM∥AB,如图1,
∵MP∥AB,
∴∠2=∠POB,
∵CD∥AB,
∴CD∥MP,
∴∠1=∠PCD,
∴∠OPC=∠1+∠2=∠POB+∠PCD;
当点P在线段DB的延长线上,作PN∥AB,如图2,
∵PN∥AB,
∴∠NPO=∠POB,
∵CD∥AB,
∴CD∥PN,
∴∠NPC=∠FCD,
∴∠OPC=∠NPC-∠NPO=∠FCD-∠POB;
同样得到当点P在线段BD的延长线上,得到∠OPC=∠POB-∠PCD.
科目:初中数学 来源: 题型:
【题目】如图所示数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.
(1)表中第3行共有_________个数,第3行各数之和是_________;
(2)表中第8行的最后一个数是_________,第8行共有_________个数;
(3)用含n的代数式表示:第n行的第一个数是_________,最后一个数是_________,第n行共有_________个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A、B(A在B左侧)两点, 一次函数y=-x+4与坐标轴分别交于点C、D,与抛物线交于点M、N,其中点M的横坐标是.
(1)求出点C、D的坐标;
(2)求抛物线的表达式以及点A、B的坐标;
(3)在平面内存在动点P(P不与A,B重合),满足∠APB为直角,动点P到直线CD的距离是否有最小值,如果有,请直接写出这个最小值的结果;如果没有,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
如图1,和都是等腰直角三角形,其中,点在线段上.
操作发现:如图2,保持点不动,绕点按顺时针旋转角度(),连接与.
(1)猜想线段,之间的数量关系,并说明理由;
拓展探究:如图3,绕点继续按顺时针旋转,当点,,在同一直线上时,过点作,垂足为.
(2)求的度数;
(3)直接写出线段,,之间的的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年10月,某市高质量通过全国文明城市测评,该成绩的取得得益于领导高度重视(A)、整改措施有效(B)、市民积极参与(C)、市民文明素质(D).某数学兴趣小组随机走访了部分市民,对这四项认可度进行调查(只选填最认可的一项),并将调查结果制作了如下两幅不完整的统计图.
(1)请补全D项的条形图;
(2)已知B、C两项条形图的高度之比为3:5.
①选B、C两项的人数各为多少个?
②求α的度数,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是( )
A. DF=BE B. AF=CE
C. CF=AE D. CF∥AE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论中,错误结论有( );①三角形三条高(或高的延长线)的交点不在三角形的内部,就在三角形的外部;②一个多边形的边数每增加一条,这个多边形的内角和就增加360;③两条平行直线被第三条直线所截,同旁内角的角平分线互相平行;④三角形的一个外角等于任意两个内角的和;⑤在中,若,则为直角三角形;⑥顺次延长三角形的三边,所得的三角形三个外角中锐角最多有一个
A. 6个B. 5个C. 4个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com