精英家教网 > 初中数学 > 题目详情
问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:                                                        
依据2:                                                        
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.
(1)依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等;
(2)见解析;
(3)OM=ON,OM⊥ON.理由见解析.

试题分析:(1)根据等腰三角形的性质和角平分线性质得出即可;
(2)证△OMA≌△ONB(AAS),即可得出答案;
(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC-∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.
(1)解:依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等.
(2)证明:∵CA=CB,
∴∠A=∠B,
∵O是AB的中点,
∴OA=OB.
∵DF⊥AC,DE⊥BC,
∴∠AMO=∠BNO=90°,
∵在△OMA和△ONB中
 ,
∴△OMA≌△ONB(AAS),
∴OM=ON. 
(3)解:OM=ON,OM⊥ON.理由如下:
如图2,连接OC,
∵∠ACB=∠DNB,∠B=∠B,
∴△BCA∽△BND,

∵AC=BC,
∴DN=NB.
∵∠ACB=90°,
∴∠NCM=90°=∠DNC,
∴MC∥DN,
又∵DF⊥AC,
∴∠DMC=90°,
即∠DMC=∠MCN=∠DNC=90°,
∴四边形DMCN是矩形,
∴DN=MC,
∵∠B=45°,∠DNB=90°,
∴∠3=∠B=45°,
∴DN=NB,
∴MC=NB,
∵∠ACB=90°,O为AB中点,AC=BC,
∴∠1=∠2=45°=∠B,OC=OB(斜边中线等于斜边一半),
在△MOC和△NOB中
 ,
∴△MOC≌△NOB(SAS),
∴OM=ON,∠MOC=∠NOB,
∴∠MOC-∠CON=∠NOB-∠CON,
即∠MON=∠BOC=90°,
∴OM⊥ON.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(6分)如图,已知AB∥CE,∠A=∠E,证明:∠CGD=∠FHB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

下列三个判断:①两点之间,线段最短。②过一点有且只有一条直线与已知直线垂直。③过一点有且只有一条直线与已知直线平行。其中判断正确的是          。(填序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为(  )
A.20°B.25°C.30°D.35°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB∥CD,∠C=35°,BC平分∠ABE,则∠ABE的度数是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为(  )
A.30B.45°C.60°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法正确的是(    )
A.若两条直线被第三条直线所截,则同旁内角互补
B.相等的角是对顶角
C.有一条公共边并且和为180º的两个角互为邻补角
D.若三条直线两两相交,则共有6对对顶角

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB∥CD,BC平分∠ABE,∠C=,则∠BED 的度数是(   )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线a∥b,∠1︰∠2︰∠3 =2︰3︰6 ,求∠1的度数.

查看答案和解析>>

同步练习册答案