精英家教网 > 初中数学 > 题目详情
如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.

(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.
(1)抛物线的解析式为:y=x2﹣4x+
(2)S与x之间的函数关系式为:S=﹣x2+20x﹣(1<x<5),S的最大值为
(3)存在点E(,﹣),使平行四边形OEBF为正方形,此时点F坐标为().

试题分析:(1)由抛物线经过点A(1,0),B(5,0),C(0,)三点,利用待定系数法求二次函数的解析式;
(2)由点E(x,y)是抛物线上一动点,且位于第四象限,可得y<0,即﹣y>0,﹣y表示点E到OA的距离,又由S=2SOBE=2××OB•|y|,即可求得平行四边形OEAF的面积S与x之间的函数关系式,结合图象,求得自变量x的取值范围;
(3)由当OB⊥EF,且OB=EF时,平行四边形OEBF是正方形,可得此时点E坐标只能(,﹣),而坐标为(,﹣)点在抛物线上,故可判定存在点E,使平行四边形OEBF为正方形.
试题解析:(1)设所求抛物线的解析式为y=ax2+bx+c,
∵抛物线经过点A(1,0),B(5,0),C(0,)三点,则由题意可得:
,解得
∴所求抛物线的解析式为:y=x2﹣4x+
(2)∵点E(x,y)是抛物线上一动点,且在x轴下方,
∴y<0,
即﹣y>0,﹣y表示点E到OA的距离.
∵OB是平行四边形OEBF的对角线,
∴S=2SOBE=2××OB•|y|=﹣5y=﹣5(x2﹣4x+)=﹣x2+20x﹣
∵S=﹣(x﹣3)2+
∴S与x之间的函数关系式为:S=﹣x2+20x﹣(1<x<5),S的最大值为
(3)∵当OB⊥EF,且OB=EF时,平行四边形OEBF是正方形,
∴此时点E坐标只能(,﹣),而坐标为(,﹣)点在抛物线上,
∴存在点E(,﹣),使平行四边形OEBF为正方形,
此时点F坐标为().
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+x-2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将△BDC绕点C逆时针旋转,使点D旋转到y轴上得到△FEC,连接BF.
(1)求点B,C所在直线的函数解析式;
(2)求△BCF的面积;
(3)在线段BC上是否存在点P,使得以点P,A,B为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式.
(2)求函数图象的顶点坐标及D点的坐标.
(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.
(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在SADP=SBCD?若存在,请求出P点的坐标;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t, 0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,       
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线,顶点随着t的增大向上移动时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=(x+1)2+2的顶点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下列材料,并解答问题:
函数y=ax2+bx+c(a≠0)叫做二次函数,它的图象是抛物线,二次函数可以化成y=a(x-h)2+k的形式,则点(h,k)为抛物线的顶点坐标.
例:y=2x2+4x-1=2(x+1)2-3,则顶点坐标为(-1,-3).
运用上述方法,求抛物线y=-2x2-3x+4的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知函数y=
(x-1)2-1(x≤3)
(x-5)2-1(x>3)
,若使y=k成立的x值恰好有三个,则k的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若函数y=(m-4)x3m2-2m-3是二次函数,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示.当y<0时,自变量x的取值范围是(    ).
A.-1<x<3
B.x<-1
C.x>3
D.x<-1或x>3

查看答案和解析>>

同步练习册答案