【题目】如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
【答案】(1)证明见解析;(2)BP=.
【解析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到,即ABCD=CPBP,由AB=AC即可得到ACCD=CPBP;
(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.
解:(1)∵AB=AC,∴∠B=∠C.
∵∠APD=∠B,∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∴ABCD=CPBP.
∵AB=AC,
∴ACCD=CPBP;
(2)∵PD∥AB,∴∠APD=∠BAP.
∵∠APD=∠C,∴∠BAP=∠C.
∵∠B=∠B,
∴△BAP∽△BCA,
∴.
∵AB=10,BC=12,
∴,
∴BP=.
“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明ACCD=CPBP转化为证明ABCD=CPBP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.
科目:初中数学 来源: 题型:
【题目】探索规律:将连续的偶数2,4,6,8,…,排成如表:
(1)若将十字框上下左右移动,可框住五位数,设中间的数为x,用代数式表示十字框中的五个数的和;
(2)若将十字框上下左右移动,可框住五位数的和能等于2000吗?如能,写出这五位数,如不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种濒危动物的数量每年以10%的速度减少,n年后该动物数量p与现有数量m之间的关系是p=m(1-10%)n.已知该动物现有数量为8000只,则3年后该动物还有( )
A. 5832 B. 5823 C. 4000 D. 5000
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】杭州某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若杭州市约有900万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,则抽取的两人恰好是甲和乙的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).
(1)若三角形CPQ是等腰三角形,求t的值.
(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;
①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.
②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB的位置关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
如图,△ABC中,DE∥BC,AD:DB=1:2,下列选项正确的是( )
A.DE:BC=1:2
B.AE:AC=1:3
C.BD:AB=1:3
D.S△ADE:S△ABC=1:4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com