精英家教网 > 初中数学 > 题目详情
如图,AB是⊙的直径,⊙O交BC的中点于D,DE⊥AC,E是垂足.
(1)求证:DE是⊙O的切线;
(2)如果AB=5,tan∠B=,求CE的长.

【答案】分析:(1)连接OD,只要证得∠EDO=90°即可得到DE是⊙O的切线.
(2)连接AD,先证明Rt△ADB∽Rt△DEC再根据相似比不难求得CE的长.
解答:(1)证明:连接OD,
∵D是BC的中点,
∴BD=CD.
∵OA=OB,
∴OD∥AC.
又∵DE⊥AC,
∴OD⊥DE.
∴DE是⊙O的切线.

(2)解:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°.
在Rt△ADB中,tan∠B=,AB=5,
∴设AD=x,则BD=2x,由勾股定理,得x2+(2x)2=25,x=
∴BD=CD=2
∵AD⊥BC,BD=CD,
∴AB=AC.
∴∠B=∠C.
∴Rt△ADB∽Rt△DEC.

∴CE=4.
点评:本题利用了三角形中位线的判定和性质,平行线的判定和性质,直径对圆周角是直角,切线的概念,正切的概念,勾股定理,相似三角形的判定和性质,中垂线的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AB=6,延长AB到点C,使BC=AB,D是⊙O上一点,DC=6
2
.求证:
(1)△CDB∽△CAD;
(2)CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD•BC=OB•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,AB是⊙O的直径,∠D=30°,则∠ABC的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,△ACD内接于⊙O,CG⊥AB于E,AD延长后交GC于F.
(1)求证:△AFC∽△ACD;
(2)若CD=2,AD=3,AC=4,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,若AB=4cm,∠D=30°,则AC=
2
2
cm.

查看答案和解析>>

同步练习册答案