如图,抛物线与轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当=O和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。
(1)(2)S=2t2+4t,<≤(3)点在线段的中点上,16,平行四边形(4)
【解析】解:(1)∵当和时,的值相等,∴,……1分
∴,∴
将代入,得,
将代入,得………………………………………….2分
∴设抛物线的解析式为
将点代入,得,解得.
∴抛物线,即……………………………..3分
(2)设直线OM的解析式为,将点M代入,得,
∴……………………………………………………………………..4分
则点P,,而,.
=.......................5分
的取值范围为:<≤.......................................6分
(1)随着点的运动,四边形的面积有最大值.
从图像可看出,随着点由→运动,的面积与的面积在不断增大,即不断变大,显当然点运动到点时,有最值...............7分
此时时,点在线段的中点上............. ................8分
因而.
当时,,∥,∴四边形是平行四边形. ..9分
(4)随着点的运动,存在,能满足.................10分
设点,,. 由勾股定理,得.
∵,∴,<,(不合题意)
∴当时,...................................11分
(1)x=O和x=4时,y的值相等,即可得到函数的对称轴是x=2,把x=2和x=3分别代入直线y=4x-16就可以求出抛物线上的两个点的坐标,并且其中一点是顶点,利用待定系数法,设出函数的顶点式一般形式,就可以求出函数的解析式;
(2)根据待定系数法可以求出直线OM的解析式,设OQ的长为t,即P,Q的横坐标是t,把x=t代入直线OM的解析式,就可以求出P点的纵坐标,得到PQ的长,四边形PQCO的面积S=S△COQ+S△OPQ,很据三角形的面积公式就可以得到函数解析式;
(3)从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显当然点P运动到点M时,S最值;
(4)在直角△OPQ中,根据勾股定理就可以求出点P的坐标.
科目:初中数学 来源: 题型:
如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。(14分)
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,
点为抛物线上一动点,在轴上是
否存在点,使以为顶
点的四边形是平行四边形,如果存在,
求出所有满足条件的点的坐标,
若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线与轴交于两点,与轴相交于点.连结AC、BC,B、C两点的坐标分别为B(1,0)、,且当x=-10和x=8时函数的值相等.
1.求a、b、c的值;
2.若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.连结,将沿翻折,当运动时间为几秒时,点恰好落在边上的处?并求点的坐标及四边形的面积;
3.上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线与轴交于A、B两点,与轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90º后再沿轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2013届四川省盐边县红格中学九年级下学期摸底考试数学试卷(带解析) 题型:解答题
如图,抛物线与轴交于两点,与轴交于点.
(1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标;
(2)经探究可知,与的面积比不变,试求出这个比值;
(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2012届仙师中学九年级第一次月考试考试数学卷 题型:选择题
如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。(14分)
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,
点为抛物线上一动点,在轴上是
否存在点,使以为顶
点的四边形是平行四边形,如果存在,
求出所有满足条件的点的坐标,
若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com