精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,直线AB、CD相交于点O,OM⊥AB,
(1)若∠1=∠2,求∠NOD的度数
(2)若∠1=
14
∠BOC,求∠AOC和∠MOD的度数.
分析:(1)由垂线的性质求得∠AOM=∠BOM=90°,然后根据等量代换及补角的定义解答;
(2)根据垂线的定义求得∠AOM=∠BOM=90°,再由∠1=
1
4
∠BOC求得∠BOC=120°;然后根据对顶角的性质及补角的定义解答即可.
解答:解:(1)∵OM⊥AB,∠1=∠2,
∴∠1+∠AOC=∠2+∠AOC=90°,即∠CON=90°;
又∠NOC+∠NOD=180°,
∴∠NOD=90°;

(2)∵OM⊥AB,∠1=
1
4
∠BOC,
∴∠BOC=120°,∠1=30°;
又∠AOC+∠BOC=180°,
∴∠AOC=60°;
而∠AOC=∠BOD(对顶角相等),
∴∠MOD=∠MOB+∠AOC=150°.
点评:本题考查了垂线的性质.解题时,要注意领会由垂直得直角这一要点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、如图所示,直线AB、CD相交于点O.若OM=ON=MN,那么∠APQ+∠CQP=
240°

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图所示,直线AB与x轴交于A,与y轴交于B.
(1)写出A,B两点的坐标;
(2)求直线AB的函数解析式;
(3)当x=5时,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AB与CD相交于点O,∠DOE=60°,∠BOE=27°,求∠BOD,∠AOD,∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AB、CD相交于点O,∠BOD=40°,OA平分∠EOC,则∠EOD的度数为
100°
100°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AB、CD、EF相交于点O,且EF⊥CD,若∠AOE=30°,则∠AOC=
60
60
°,∠AOF=
150
150
°,∠BOC=
120
120
°.

查看答案和解析>>

同步练习册答案