如图,在平面直角坐标系xoy中,抛物线与x轴,y轴的交点分别为点A,点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.
解:(1),令得,
∴或∴;
在中,令得即;
由于BC∥OA,故点C的纵坐标为-10,由得或
即且易求出顶点坐标为
于是,,顶点坐标为。
(2)若四边形PQCA为平行四边形,由于QC∥PA。故只要QC=PA即可,而故得
(3)设点P运动秒,则,,说明P在线段OA上,且不与点OA、重合,
由于QC∥OP知△QDC∽△PDO,故
∴∴
又点Q到直线PF的距离,∴,
于是△PQF的面积总为90。
(4)由上知,,。构造直角三角形后易得
① 若FP=PQ,即,故,
∵∴∴
② 若QP=QF,即,无的满足条件;
③ 若PQ=PF,即,得,∴或都不满足,故无的满足方程;
综上所述:当时,△PQR是等腰三角形。
科目:初中数学 来源: 题型:
数学课上,老师用多媒体给同学们放了由魔术界当红艺人刘谦表演的的神奇的障眼法“硬币穿玻璃”魔术,敏捷的身手、幽默的语言把同学们逗得乐不可支。看完后老师说:“今天我也来当一回魔术师给你们现场表演一个数学魔术。”说完便在黑板上画出下面两个图:
请你借助数学知识帮助同学们分析老师画的这两个图,通过计算验证说明图1到图2的拼接是否可行,若不行请说明理由,并画出正确的拼接图
查看答案和解析>>
科目:初中数学 来源: 题型:
把多项式x4一8x2+16分解因式,所得结果是( ) (原创)
A.(x-2)2 (x+2)2 B. (x-4)2 (x+4)2 C.(x一4)2 D.(x-4)4
查看答案和解析>>
科目:初中数学 来源: 题型:
在一个不透明的盒子里装有6个分别写有数字,,,0,1,2,的小球,它们除数字不同外其余全部相同。现从盒子里随机取出一个小球,记下数字后不放回,再取出一个记下数字,那么点在抛物线上的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com