【题目】某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.
(参考数据: =1.1, =1.2, =1.3, =1.4)
【答案】
(1)
解:设增长率为x,根据题意2015年为2900(1+x)万元,2016年为2900(1+x)2万元.
则2900(1+x)2=3509,
解得x=0.1=10%,或x=﹣2.1(不合题意舍去).
答:这两年投入教育经费的平均增长率为10%
(2)
解:2018年该地区投入的教育经费是3509×(1+10%)2=4245.89(万元).
4245.89<4250,
答:按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元.
【解析】(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2900(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解;
(2)利用(1)中求得的增长率来求2018年该地区将投入教育经费.本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.
科目:初中数学 来源: 题型:
【题目】在如图所示的网格中,线段AB和直线a如图所示,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在格点上.
(1)在图中画出以线段AB为一边的正方形 ABCD,且点C和点D均在格点上,
并直接写出正方形 ABCD的面积为 ;
(2)在图中以线段AB为一腰的等腰三角形ABE,点E在格点上,则满足条件的点E有_____ 个;
(3)在图中的直线a上找一点Q,使得△QAB的周长最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,∠AOB . 求作:∠A′O′B′,使∠A′O′B′=∠AOB . 作法:
①以________为圆心,________为半径画弧.分别交OA , OB于点C , D .
②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,
③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.
④过点________画射线O′B′,则∠A′O′B′=∠AOB .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,以△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,试判断△ABC与△AEG面积之间的关系,并说明理由。
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点C1、C2、C3…在x轴上,点A1、A2、A3…在直线l上,A1(0,1),∠A2 A1B1=45°,则点Bn的坐标为____________(用n的代数式表示,n为正整数);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=3,BC=5,以点B为圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于 PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第2018个图形中等边三角形的个数是_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com