精英家教网 > 初中数学 > 题目详情
如图,点O是正△ACE和正△BDF的中心,且AE∥BD,则∠AOF=    度.
【答案】分析:连接OE,则∠AOE是中心角,即可得到度数,进而得到∠AOF的大小.
解答:解:∵AE∥BD,
∴OF⊥AE,
连接OE,可得到∠AOE=360°÷3=120°;
∵OA=OE,
∴∠AOF=60°.
点评:解决本题的关键是根据所给条件得到相应的直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•樊城区模拟)如图,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求B、C两点坐标;
(2)抛物线y=
16
x2-bx+c经过A、O两点,求抛物线的解析式,并验证点C是否在抛物线上;
(3)在x轴上是否存在一点P,使△PCM与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O是正△ABC内一点,∠AOB=90°,∠BOC=α,将△BOC绕点C顺时针旋转60°得到△AEC,连接OE
(1)求证:△COE是正三角形;
(2)当α为何值时,AC⊥OE,并说明理由;
(3)探究是否存在α的值使得点O到正△ABC三个顶点的距离之比为1:
3
:2
?若存在请直接写出α的值,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点A是抛物线数学公式与x轴正半轴的交点,点B在这条抛物线上,且点B的横坐标为2.连接AB并延长交y轴于点C,抛物线的对称轴交AC于点D,交x轴于点E.点P在线段CA上,过点P作x轴的垂线,垂足为点M,交抛物线于点Q.设点P的横坐标为m.
(1)求直线AB对应的函数解析式.
(2)当四边形DEMQ为矩形时,求点Q的坐标.
(3)设线段PQ的长为d(d>0),求d关于m的函数解析式.
(4)在(3)的情况下,请直接写出当d随着m的增大而减小时,m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求B、C两点坐标;
(2)抛物线y=数学公式x2-bx+c经过A、O两点,求抛物线的解析式,并验证点C是否在抛物线上;
(3)在x轴上是否存在一点P,使△PCM与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点O是正△ABC内一点,∠AOB=90°,∠BOC=α,将△BOC绕点C顺时针旋转60°得到△AEC,连接OE
(1)求证:△COE是正三角形;
(2)当α为何值时,AC⊥OE,并说明理由;
(3)探究是否存在α的值使得点O到正△ABC三个顶点的距离之比为数学公式?若存在请直接写出α的值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案