精英家教网 > 初中数学 > 题目详情

【题目】如图17张长为a,宽为bab)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则ab满足( )

A. a=b B. a=2b

C. a=3b D. a=4b

【答案】C

【解析】试题解析:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a

AD=BC,即AE+ED=AE+aBC=BP+PC=4b+PC

AE+a=4b+PC,即AE-PC=4b-a

阴影部分面积之差S=AEAF-PCCG=3bAE-aPC=3bPC+4b-a-aPC=3b-aPC+12b2-3ab

3b-a=0,即a=3b

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,连接BD,点OBD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.

(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?

(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.

三角形内点的个数

图形

最多剪出的小三角形个数

1

3

2

5

3

7

(问题解决)

(1) 当三角形内有4个点时,最多剪得的三角形个数为______________

(2) 你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加______

(3) 猜想:当三角形内点的个数为n时,最多可以剪得_______________个三角形;

像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳

(问题拓展)

(4)请你尝试用归纳的方法探索1+3+5+7++(2n-1)+(2n+1)的和是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l交x轴于点C,交y轴于点D,与反比例函数y= (k>0)的图像交于两点A、E,AG⊥x轴,垂足为点G,SADG=3

(1)k=
(2)求证:AD=CE;
(3)如图2,若点E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)x2y﹣3xy2+2x2y﹣y2x ;(2)2(2a2﹣9b)﹣3(3a2﹣7b);

(3)2a2﹣[(ab﹣4a2)+8ab]﹣ab.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A,点B关于AC边的对称点为B,点C关于AB边的对称点为C,则△ABC与△ABC的面积之比为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海警船在A处发现北偏东30°方向相距12海里的B处有一艘可疑货船,该艘货船以每小时10海里的速度向正东航行,海警船立即以每小时14海里的速度追赶,到C处相遇,求海警船用多长时间追上了货船?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:

一百馒头一百僧,大僧三个更无争,

小僧三人分一个,大小和尚得几丁.

意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是(  )

A. 大和尚25人,小和尚75 B. 大和尚75人,小和尚25

C. 大和尚50人,小和尚50 D. 大、小和尚各100

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示.

(1)请你根据图中的数据填写表格;

姓名

平均数

众数

方差

8

8

2.8

(2)从平均数和方差相结合看,谁的成绩好些?从发展趋势来看,谁的成绩好些?

查看答案和解析>>

同步练习册答案