精英家教网 > 初中数学 > 题目详情
7.如图,在△ABC中,AB=AC,BD、CE是腰AB、AC上的高,交于点O.
(1)求证:OB=OC.
(2)若∠ABC=65°,求∠COD的度数.

分析 (1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;
(2)首先求出∠A的度数,进而求出∠COD的度数.

解答 (1)证明:∵AB=AC,
∴∠ABC=∠ACB,
∵BD、CE是△ABC的两条高线,
∴∠BEC=∠BDC=90°,
在△BEC和△CDB中,
$\left\{\begin{array}{l}{∠BEC=∠CDB}\\{∠EBC=∠DCB}\\{BC=CB}\end{array}\right.$,
∴△BEC≌△CDB,
∴∠DBC=∠ECB,BE=CD,
在△BOE和△COD中,
$\left\{\begin{array}{l}{∠BOE=∠COD}\\{BE=CD}\\{∠BEC=∠BDE}\end{array}\right.$,
∴△BOE≌△COD,
∴OB=OC;
(2)解:∵∠ABC=65°,AB=AC,
∴∠A=180°-2×65°=50°,
∴∠COD=∠A=50°.

点评 本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=$\frac{1}{3}$,求sin2α的值.小娟是这样给小芸讲解的:
构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=$\frac{BC}{AB}$=$\frac{1}{3}$,可设BC=x,则AB=3x,….
【问题解决】
(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)
(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若x1,x2是方程3x2-2x-2=0的两根,则$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:在△ABC中,AB=AC,CD是AB边上的高,点P是AC边上任意一点(不与点A,C重合),过点P作PE⊥BC,垂足为E,交CD于点F.
(1)如图1所示,若AD=CD,探究线段PF,CE之间的数量关系,并证明你的结论;
(2)如图2所示,若AD=kCD,求$\frac{PF}{CE}$的值(用含k的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,小明的家D距离大树底部A是9米,一次台风过后,大树在离地面3米的点B处折断,顶端着地处点C在AD上,又知BC恰好等于CD.
(1)请用直尺和圆规作出点C的位置(保留作图痕迹,不必写作法);
(2)求大树折断前高度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.
(2)阅读下面的内容,并解决后面的问题:
如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.
解:∵AP、CP分别平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的结论得:$\left\{\begin{array}{l}{∠P+∠3=∠1+∠B①}\\{∠P+∠2=∠4+∠D②}\end{array}\right.$
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P=$\frac{1}{2}$(∠B+∠D)=26°.
①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.
②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.
③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,四边形ABCD的四个顶点都在⊙O上,∠ADC=85°,在探究“四点共圆的条件”的活动中,知道∠ADC与∠ABC互补,若∠EBC是ABCD的一个外角,则∠EBC=85°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,一只杯子的上下底面分别是直径为5cm和7.5cm的圆,母线AB的长为15cm.
(1)求杯子的侧面积.
(2)从点B出发,绕着杯子两圈画一条装饰线,终点为A,求装饰线的最短长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,∠B=90°,点P从点A开始,沿AB向点B以1cm/s的速度移动,点Q从B点开始沿BC 以2cm/s的速度移动,如果P、Q分别从A、B同时出发:
(1)几秒后四边形APQC的面积是31平方厘米;
(2)若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.

查看答案和解析>>

同步练习册答案