精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得△BOD∽△BAC?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由.
分析:(1)已知了抛物线的顶点横坐标为1,即x=-
b
2a
=1,将已知的两点坐标代入抛物线中,联立三式即可求出抛物线的解析式.
(2)本题要分两种情况讨论:△BOD∽△BAC或△BDO∽△BAC,解题思路都是通过相似三角形得出的关于BD、BC、BO、BA的比例关系式求出BD的长,然后根据∠OBC=45°的特殊条件用BD的长求出D点的坐标.
解答:解:(1)∵二次函数图象顶点的横坐标为1,且过点(2,3)和(-3,-12),
∴由
-
b
2a
=1
4a+2b+c=3
9a-3b+2=-12

解得
a=-1
b=2
c=3

∴此二次函数的表达式为y=-x2+2x+3;

(2)假设存在直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),使得以B,O,D为顶点的三角形与△BAC相似.
在y=-x2+2x+3中,令y=0,则由-x2+2x+3=0,
解得x1=-1,x2=3
∴A(-1,0),B(3,0)
令x=0,得y=3.
∴C(0,3).
设过点O的直线l交BC于点D,过点D作DE⊥x轴于点E.
∵点B的坐标为(3,0),点C的坐标为(0,3),点A的坐标为(-1,0).
∴|AB|=4,|OB|=|OC|=3,∠OBC=45°.
∴|BC|=
32+32
=3
2

要使△BOD∽△BAC或△BDO∽△BAC,
已有∠B=∠B,则只需
|BD|
|BC|
=
|BO|
|BA|
,①或
|BO|
|BC|
=
|BD|
|BA|
②成立.
若是①,则有|BD|=
|BO|•|BC|
|BA|
=
3×3
2
4
=
9
2
4

而∠OBC=45°,
∴|BE|=|DE|.
∴在Rt△BDE中,由勾股定理,
得|BE|2+|DE|2=2|BE|2=|BD|2=(
9
2
4
2
解得|BE|=|DE|=
9
4
(负值舍去).
∴|OE|=|OB|-|BE|=3-
9
4
=
3
4

∴点D的坐标为(
3
4
9
4

将点D的坐标代入y=kx(k≠0)中,求得k=3,
∴满足条件的直线l的函数表达式为y=3x,
或求出直线AC的函数表达式为y=3x+3,则与直线AC平行的直线l的函数表达式为y=3x,
此时易知△BOD∽△BAC,再求出直线BC的函数表达式为y=-x+3.联立y=3x,y=-x+3求得点D的坐标为(
3
4
9
4
),
若是②,则有|BD|=
|BO|•|BA|
|BC|
=
3×4
3
2
=2
2

而∠OBC=45°,
∴|BE|=|DE|,
∴在Rt△BDE中,由勾股定理,
得|BE|2+|DE|2=2|BE|2=|BD|2=(2
2
2
解得|BE|=|DE|=2(负值舍去)
∴|OE|=|OB|-|BE|=3-2=1.
∴点D的坐标为(1,2).
将点D的坐标代入y=kx(k≠0)中,求得k=2.
∴满足条件的直线l的函数表达式为y=2x.
∴存在直线l:y=3x或y=2x与线段BC交于点D(不与点B,C重合),
使得以B,O,D为顶点的三角形与△BAC相似,且点D的坐标分别为(
3
4
9
4
)或(1,2).
点评:本题是二次函数综合题,考查了二次函数解析式的确定、相似三角形的判定、函数图象交点等知识点.综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案